Restoring a Historically Ditched Salt Marsh in a Mid-Atlantic Estuary: Application to Sea Level Rise and Coastal Resiliency

Stephanie Briggs
Cardno ENTRIX
Newark, Delaware

7th National Summit on Coastal and Estuarine Restoration and 24th Biennial Meeting of The Coastal Society
November 4, 2014
chris.pfeifer@cardno.com
stephanie.briggs@cardno.com
Salt Marsh Ditching

- By 1930s - 90% of Atlantic coastal marshes ditched for mosquito control
 - 2/3 of Delaware’s 90,000 acres of salt marsh

- Remove standing water from marsh to eliminate mosquito breeding habitat

- Indiscriminately drained non-mosquito breeding habitat also

- Adverse impacts to marsh structure & function
Salt Marsh Self-Maintenance

- Requires tidal ebb and flow

- Above ground vegetation traps sediments transported on tidal flows

- Below ground vegetation contributes organic matter to sediments

- Marsh accretion must keep pace with sea level or self-maintenance breaks down leading to habitat loss (Morris et al. 2002)
Self-Maintenance – Created Ditch

- Habitat initially drained by ditches has subsided over time reducing the depth to water table and creating wetter conditions than in natural creek habitat.

- Elevations and hydrologic regime supports vegetation growth but water retention in the rooting zone alters community composition (forbs), sediment trapping, and soil organic content.

- Self-maintenance has been functioning for the past 70 years, but questions remain:
 - Will accretion keep pace with sea level rise?
 - Will further subsidence occur and limit self-maintenance?

- Impacts from ditching may be greater in more extensively ditched marshes with overlapping hydrologic regimes.
Delaware’s Inland Bays are a “mesocosm” for studying the effects of sea-level rise

Indian River Inlet has experienced significant scouring since first stabilized in 1938-40

Increase in inlet cross-sectional area has increased tidal prism

Tidal range has increased 1-2 ft. within Indian River Bay between 1948 & 1988

USACOE, 1994
Self-Maintenance: Ditch-plug Pools

- Poor drainage results in surface and pore-water retention that promotes edaphic stress and vegetation die back.

- Low organic and mineral inputs, low sediment strength, and collapse of the root zone has led to habitat instability and marsh subsidence with lower elevations.

- This hydrologic restriction leads to a decoupling of the self-maintenance process with a transition from vegetated to open water habitat, and the potential for additional loss of salt marsh habitat with continued sea level rise.
- 24-acre project site within nature preserve near Ocean View, DE
- 135-acre marsh complex
- Mostly *S. alterniflora* low marsh
- Managed by Delaware Center for the Inland Bays
- Owned by Sussex County
Project Goals & Objectives

- Compensatory mitigation for a natural resource damage assessment
- Address habitat alteration from ditching
- Enhance habitat value for salt marsh resources
 - Restore more natural hydrologic patterns
 - Increase micro-habitat diversity & interspersion
 - Expand foraging opportunities for fish, birds & invertebrates
 - Stimulate plant growth in poorly drained areas
Design Features

- Replace linear ditches with meandering tidal creeks
- Increase permanent open water on marsh surface at low tide
- Improve drainage in water-logged areas with stunted vegetation
- Completely backfill mosquito ditches with excavated spoil
Channel Design

- Empirical basis for channel plan-form & cross-sectional design

- Morphometric analysis
 - Bifurcation ratios
 - Sinuosity
 - Drainage density

- Target values developed from Delaware Bay reference marshes

- Empirical tidal prism model

- Site-specific relationships developed from on-site mosquito ditches
Monitoring

- **Pre-Construction (2005 - 2007)**
- **Post-Construction (2009 - 2013)**

Biological Parameters
- ✓ Vegetation
- ✓ Nekton
- ✓ Birds
- ✓ Fiddler Crabs
- ✓ Ribbed Mussels

Geophysical Parameters
- ✓ Pore Water Salinity
- ✓ Groundwater Elevation
- ✓ Tidal Hydrology
- ✓ Channel Morphology

Photo-Monitoring
- ✓ 360° Panoramic
- ✓ Orthographic
- ✓ Oblique Aerial
Groundwater

Expectation

- Improved drainage would lower water table elevation & decrease pore water salinity

Methods

- 22 shallow piezometers
- 2x annually
- Low tide
Vegetation

Expectation

- Improved drainage would have a positive effect on vegetation
- No significant shift in species composition

Methods

- 36 fixed 1m² plots
- 1x per year (end of growing season)
Key Findings - Vegetation

- Construction resulted in short-term collateral impacts to marsh vegetation; most recovered in 1-2 years
- Percent cover exceeded pre-construction site-wide mean of 78% by Year 3
- Vegetation response strongest proximal to constructed tidal creeks esp. where soils previously water-logged
- Plant community composition remained largely unchanged
- Residual disturbance areas provide valuable foraging habitat for shorebirds
- Backfilled ditches quickly revegetated from marsh sod
- *Phragmites* did not expand into disturbed areas
In Summary

- Vegetation and hydrology are the primary indicators of self-maintenance.
- Ditching can disrupt self-maintenance under conditions of sea level rise.
- Ditch plugging alone does not restore the self-maintenance process.
- Restoration must address underlying factors linked to marsh decline.
- May be necessary for more involved effort, understanding funding constraints.
- Can be successful and should be considered as another tool to manage sea level rise.
Acknowledgements

Project Partners

- Delmarva Power & Light / Conectiv Energy / Pepco Holdings Inc.
 - Dave Langseder & Cheryl Hess (*former PM*)
- Delaware Center for the Inland Bays / Sussex County
 - Chris Bason, Eric Buehl & E.J. Chalabala
- DNREC Mosquito Control Section
 - Bill Meredith, Chris Lesser & Team

Natural Resource Trustees

- DNREC, USFWS & NOAA

Cardno ENTRIX Project Team