Evaluating the Potential for Enhanced Nutrient Management Techniques to Reduce Nitrous Oxide Emissions and Generate Carbon Offsets

Beth McGee, Chesapeake Bay Foundation
Laura Pagliarulo, WGES
Alden Hathaway, Sterling Planet
William Salas and Pete Ingraham, Applied GeoSolutions
Mark Reiter, Virginia Tech
Suzy Friedman, Environmental Defense Fund
Chris Sigmund, Team Ag
Gordon Smith, Ecofor
2012 US Agriculture Greenhouse Gas Emission Sources (USEPA 2014)

- **Agricultural Soil Management**: Largest source of GHG emissions.
- **Enteric Fermentation**: Significant, but less than soil management.
- **Manure Management**: Moderate impact.
- **Rice Cultivation**: Smaller impact compared to other sources.
- **Field Burning of Agricultural Residues**: Very small impact, less than 0.5 Tg CO₂ Eq.

Agriculture as a portion of all emissions is 8.1%.
• Nitrous oxide is ~ 300 x more potent than CO2

• Mitigation benefits are not reversible

• Both the Verified Carbon Standard (VCS) and the American Carbon Registry (ACR) have approved protocols for carbon credits:
 - **VCS**: MSU/EPRI Reduced fertilizer application. Empirically derived EF (North Central Region) or 1% IPCC default
 - **ACR**: MSU/EPRI or DNDC model for fertilizer management
Objectives

• Develop and calibrate a Chesapeake region-specific version of DNDC model
• Work with farmers in PA and VA to promote adoption of enhanced nutrient management approaches
• Apply the DNDC model to estimate changes in N2O emissions reductions
• Apply the ACR methodology for fertilizer management
Enhanced Nutrient Management

• “Adaptive Nutrient Management” in South Central, PA – EDF and Team Ag
 – Soil testing, corn stalk nitrate test, and education to promote nutrient use efficiency and better nutrient management

• Variable Rate Technology/Greenseeker in VA Eastern Shore – VA Tech
DNDC Model Development

- Regional Calibration from long-term dataset from USDA-ARS Beltsville Lab
- User friendly web tool to facilitate data entry
Participation

- PA: 6 producers and roughly 3000 acres corn/wheat/soybean rotation under adaptive nutrient management
- VA: 8 producers implementing GreenSeeker on roughly 18,000 acres corn/wheat/soybean over 3 years.
 - On average, GreenSeeker reduced corn N application by 11lbs/acre and wheat by 2.4 lbs/acre
N leaching by farm field, 2013
Conventional N application vs. Greenseeker

Legend:
- Blue: Greenseeker
- Red: Conventional
Challenges

• DNDC Model is data intensive
 – Fertilizer form, rate, and date of application
 – Planting and harvest dates
 – Residue management/tillage
 – Yield
 – Irrigation amounts, dates
Challenges

- ACR Methodology requires 5 years of historic information for baseline
- For a variety of reasons (time, trust, availability) data are hard to extract from farmers
- Difficulty in discerning “change in practice” from farmers implementing ANM
Opportunities

• GreenSeeker is demonstrated to, on average, reduce N application with no effect on yield

• High farmer interest in GreenSeeker where it has been piloted, hence, opportunity to scale up

• Possible to create interface that would allow automatic download of GreenSeeker outputs to help simplify data collection
Next Steps

• Develop “synthetic baseline” for PA ANM farmers to estimate potential benefits from change in practice

• Fill datagaps from GreenSeeker farmers and run DNDC scenarios to discern change from baseline
Acknowledgements

• USDA Natural Resources Conservation Service Conservation Innovation Grant Program

• Washington Gas Energy Services and Sterling Planet