Individual Decision-Making and the Valuation of Varying Shoreline Protection Measures in Mobile Bay, Alabama

Alyson R. Lewis
Ph.D. Candidate
Coastal Resources Management
East Carolina University

Craig E. Landry, PhD
Associate Professor - Agricultural and Applied Economics
University of Georgia

Steven B. Scyphers, Ph.D.
NSF SEES Fellow
Northeastern University
Purpose:

- Examine individuals’ decision-making process regarding shoreline protection measures in Mobile Bay, Alabama
- Model individuals’ probability of armoring their shoreline using revealed and stated preference (i.e. contingent behavior) data
- Random effects probit model, which controls for unobserved heterogeneity at the individual level
Mobile Bay, Alabama

- The National Estuary Program has deemed Mobile Bay an estuary of national significance due to its economic and environmental importance.
- 92% of its shorelines are experiencing erosion (Jones et al., 2009).
- Over 50% of the bay's total coastline is armored (Living Shoreline Summit Steering Committee, 2006).

Douglass and Pickel 1999
Options for Protecting Shoreline Property Against Erosion

1. **Do nothing** - Leave the shoreline unaltered

2. **Armor** – (most popular)
 - Rip-rap revetment
 - Vertical wall
 - Vertical wall supplemented with rip-rap

3. **Natural Protection** - gaining popularity, but limited applications
Background:

- Studies of shoreline protection decisions have been broad in scope:
 - Examine costs and benefits associated with the decision to either abandon or preserve an entire shoreline
 - Focus on decision-making process of various stakeholders and institutions
- Studies valuing specific erosion management strategies in the U.S. are concerned with the country’s expansive protective barrier islands and vast amounts of beaches
- Much less attention on shoreline management decisions at the individual level
Data:

- Collected by Steven Scyphers (working with University of South Alabama) in 2011
- Previously used to investigate coastal resilience and to develop a framework for improved communication and decision making in Mobile Bay, Alabama
- Survey instrument has five major themes:
 1. Perceptions residents hold towards the threats and the overall health of Mobile Bay,
 2. Alabama fisheries and their habitats,
 3. Coastal management,
 4. Individual property characteristics,
 5. And demographic information

Shoreline Types

- 55% Vertical Wall
- 19% Vertical Wall with Rip-Rap
- 19% Rip-Rap
- 7% Natural/Vegetated
Data:

• 357 observations

• Variables of interest for this study:
 – anything that could possibly influence the propensity of shoreline armoring
 – perceived costs and benefits associated with alternative shoreline options

• Variables used/created for this study include:
 – maintenance costs (per foot) for each of the four shoreline types
 – dummy variables for varying levels of income and education
 – revealed preferences for whether or not an armored or natural shoreline is preferred over the present method
Descriptive Stats:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>S.D.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Armor</td>
<td>0.81</td>
<td>0.39</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>NeighborShoreline</td>
<td>0.83</td>
<td>0.37</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Primary Residence</td>
<td>0.74</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Years on Bay</td>
<td>26.21</td>
<td>18.69</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>Number in Household</td>
<td>2.52</td>
<td>2.13</td>
<td>1</td>
<td>35</td>
</tr>
<tr>
<td>College</td>
<td>0.42</td>
<td>0.49</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Shoreline Length</td>
<td>100.42</td>
<td>64.8</td>
<td>45</td>
<td>900</td>
</tr>
<tr>
<td>Hard Effective*</td>
<td>0.87</td>
<td>0.34</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hard Appealing*</td>
<td>0.86</td>
<td>0.35</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hard Damaging*</td>
<td>0.75</td>
<td>0.43</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

* = perception variables
Average Costs Associated with each Shoreline Type:

<table>
<thead>
<tr>
<th>Shoreline Type</th>
<th>Initial Cost</th>
<th>Maintainance Costs (per year)</th>
<th>Maintenance Days (per year)</th>
<th>Initial MaintCosts/Foot</th>
<th>Shoreline Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoreline 1: Vertical Wall</td>
<td>76,570.40</td>
<td>873.09</td>
<td>11.46</td>
<td>829.11</td>
<td>9.04</td>
</tr>
<tr>
<td>Shoreline 2: V.W. with Rip-rap</td>
<td>33,675.68</td>
<td>856.54</td>
<td>9.65</td>
<td>370.72</td>
<td>11.07</td>
</tr>
<tr>
<td>Shoreline 3: Rip-Rap</td>
<td>20,536.20</td>
<td>1,066.67</td>
<td>10.41</td>
<td>175.55</td>
<td>6.12</td>
</tr>
<tr>
<td>Shoreline 4: Natural</td>
<td>0.00</td>
<td>422.83</td>
<td>13.48</td>
<td>0.00</td>
<td>3.46</td>
</tr>
</tbody>
</table>
Methods:

• Random effects probit regression model
 – controls for unobserved heterogeneity at the individual level

• Armored = bulkheads, rip-rap revetments, breakwater/wave attenuating device, and groins

• Unaltered = vegetated shorelines and shorelines with no erosional control
Results:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Err.</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neighbor’s Shoreline</td>
<td>2.332</td>
<td>0.506</td>
<td>***0.000</td>
</tr>
<tr>
<td>Neighbor’s Influence</td>
<td>0.777</td>
<td>0.355</td>
<td>**0.029</td>
</tr>
<tr>
<td>Years on Bay</td>
<td>-0.019</td>
<td>0.008</td>
<td>**0.019</td>
</tr>
<tr>
<td>Hard Effective</td>
<td>0.863</td>
<td>0.444</td>
<td>**0.050</td>
</tr>
<tr>
<td>Hard Appealing</td>
<td>0.802</td>
<td>0.444</td>
<td>*0.071</td>
</tr>
<tr>
<td>Age</td>
<td>0.033</td>
<td>0.015</td>
<td>**0.030</td>
</tr>
<tr>
<td>Hard Env. Damaging</td>
<td>-0.557</td>
<td>0.411</td>
<td>0.176</td>
</tr>
<tr>
<td>Hard Maintenance</td>
<td>0.112</td>
<td>0.365</td>
<td>0.760</td>
</tr>
<tr>
<td>Shoreline Length (logged)</td>
<td>-0.284</td>
<td>0.326</td>
<td>0.384</td>
</tr>
<tr>
<td>Income (logged)</td>
<td>0.152</td>
<td>0.240</td>
<td>0.526</td>
</tr>
<tr>
<td>College</td>
<td>-0.418</td>
<td>0.370</td>
<td>0.259</td>
</tr>
</tbody>
</table>

N=357
Log likelihood= -149.06
Discussion:

• The Alabama Natural Resources Defense Council’s (NRDC) annual report (2011) stresses the need for a formal state-wide plan addressing shoreline protection under continued sea level rise and climate change.

• Frameworks for coastal decision making are ultimately shaped by the norms and values of a particular society and perceptions of risk (Adger et al. 2005; Berke and Smith, 2012; Zobel, 2011; Van Der Leeuw, 2000).

• Shoreline protection decisions should include all stakeholders to develop integrative strategies meeting the social objectives of the community.

• Need more data on costs!
 – Allows for a more detailed analyses of each shoreline type rather than simply “armored” or “natural”
Questions, Comments, or Suggestions???