Coastal Watershed Planning – Analyzing Bacterial Loads in a Rural Watershed for BMP Implementation

Stephanie Glenn, Ph.D., HARC
Ryan Bare, HARC
Overview

- Watershed Protection Plans
- How sampling results translate into SELECT and Load Reduction Goals (LDCs and Tidal Mixing)
- Implementation Phase: How Load Reduction Goals translate into real-world management measures

End Goal: Decreased Levels of Bacteria = Improved Water Quality
Watershed Protection Plans

Load Duration Curve (EFU 8042546; n=43)

- High Flows
- Mid-Range Conditions
- Low Flows
- Load Regression Curve
- E. Coli TMDL with 10% MOS

Percent of Days Load Exceeded

Stakeholder approved and EPA accepted
Galveston Bay

- Double Bayou
- Cedar Bayou
- Bastrop Bayou
- Armand Bayou
- Dickinson Bayou
- Westfield Estates
Sampling Stations

- Two on each Fork, one at Anahuac WWTP
- Two Year sampling period
- **routine** events (sampling @ twice a month)
- **targeted** rain events @ 3/year
Double Bayou Bacteria Geometric Mean

*Geometric means includes routine samples only

- **E. coli Geometric Mean Criterion (126 MPN/100 mL)**
- **Enterococci Geometric Mean Criterion (35 MPN/100 mL)**

<table>
<thead>
<tr>
<th>Location</th>
<th>E. coli (w/ most probable number)</th>
<th>Enterococci (geometric mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Fork Upper @ FM 1663</td>
<td>94</td>
<td>123</td>
</tr>
<tr>
<td>Anahuac Waste Water Treat.</td>
<td>5</td>
<td>72</td>
</tr>
<tr>
<td>East Fork Lower @ Carrington Rd</td>
<td>72</td>
<td>123</td>
</tr>
<tr>
<td>East Fork Upper @ Sykes Rd</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>West Fork Lower @ Eagle Ferry Rd</td>
<td>78</td>
<td></td>
</tr>
</tbody>
</table>
Spatially Explicit Load Enrichment Calculation Tool (SELECT)

- Developed at the Dept. of Biological and Agricultural Engineering and the Spatial Science Laboratory at Texas A&M University
- Spatially characterizes potential bacteria loads
- Uses layers in a GIS to calculate potential loads
 - Land Use, Delineated watersheds, Soils, Hydrography

Photos courtesy of Linda Sheed
Estimating Populations

- Estimate populations in the watershed that might be contributing to bacterial loads – people, livestock, wildlife, etc.

- Example – Dogs in Anywhere Watershed
 - 1 dog per household in Anywhere
 - Estimated Anywhere Population: 10,775 (from Census block data)
 - *E. coli* load per dog
 - (fecal excretion rates for animals/humans are calculated and published by the EPA)
 - 5.0×10^9 Fecal Coliform = 2.5×10^9 *E. coli*
 - SELECT will calculate different potential loads from these inputs for Anywhere
Functions of Stakeholder Workgroups with SELECT

Workgroups

- Review population estimates
- Review results & give feedback to adjust model
- Use results in determining type/number/placement of BMPs

SELECT Model

- Apply populations to appropriate land uses
- Calculate bacteria loading
- Create map showing areas of highest to lowest potential loading
SELECT Results

- Ran Spatially Explicit Load Enrichment Calculation Tool (SELECT) model to determine potential source output and location
- Met with workgroups to discuss and fine tune results

Watershed @ 62,000 acres
Double Bayou Upper East Fork Load Duration Curve (LDC – Estimate of Pollutant Loads)

- High Flow Conditions = 84% reduction needed
- Mid-Range Flow Conditions = 30% reduction needed
- Low Flow Conditions = 0% reduction needed

Note the blue line has crossed and is under the red line (in compliance) at this point.
Trinity Bay

- Part of Galveston Bay Estuary System
- Relatively Shallow
 - 2 to 3 meters (6.6 to 9.8 feet)
- Largely enclosed
- Not heavily influenced by tides
- Winds significantly influence fluctuations and water levels
Flow Example: 3 Day Variance in Water Flow Patterns at West Fork Lower

- 24-hour data – irregularity of tidal, wind and other influences

Diurnal Pattern

Semidiurnal Pattern

Irregular Pattern
Bacteria Loadings

• Loadings for the West Fork Lower station were analyzed based on volumetric calculations.

• Daily loads on bacteria sampling days were calculated by integrating the 15-minute volume increments into a day’s worth of volume (units of cubic meters, or m³).
 – So, every 15 minutes the flow meter sampled: Flow in cubic feet per second, or cfs.
 – Integrating the day’s worth of 15 minute measurements resulted in final volume for the day.
 – If you think of that cross section of the bayou as bowl, we are interested in all flow into that bowl during one day: This is total volume (V_t).
Bacteria Loadings

- Blue dots on or below the yellow line are meeting
- Blue dots above the line are exceeding

West Fork Lower: V_t and Daily Load

![Graph showing the relationship between daily load and V_t.]
BMPs and Measured Load Reductions

• Deposition distance of ~7 ft from stream (opposed to instream) leads to 95% reduction of bacteria that reaches stream (Larsen, Buckhouse et al. 1988)

• Riparian Herbaceous Buffers
 – Used with alt. water source
 – 27 m (~90 ft) wide riparian buffer = 69% instream bacteria reduction
 – Also, can reduce bacteria inputs from wildlife and feral hogs

• Dynamic multi use BMPs such as this combination are preferred and will be given priority
HARC (härk), n.
an independent research hub helping people thrive and nature flourish.

Questions?

HARCresearch.org
Double Bayou WPP Current State

- Double Bayou 2012 Integrated Report (impaired waters in the State of Texas)
 - West Fork
 - low levels of dissolved oxygen
 - elevated levels of bacteria
 - East Fork
 - concern for elevated levels of bacteria
 - concern for low dissolved oxygen

- Low dissolved oxygen is a concern for aquatic life because they require a certain amount of dissolved oxygen to live and reproduce

- Elevated levels of bacteria can be a concern for people using a waterway for recreational use, because elevated concentrations can indicate the presence of human disease causing pathogens
Load Duration Curves

- Incorporate the concentration of constituent (in Double Bayou’s case, bacteria) to produce the Load Duration Curve (LDC)
- The “load” is expressed as amount of pollutant per unit time – i.e., bacteria in cfu/day.
- Resulting curve reflects the maximum load a stream can carry across the regime of flow conditions (low flow, medium flow, high flow) without exceeding the water quality standard.
Load Duration Curves

• Flow regime pollutant concentrations can be useful for evaluating potential point or nonpoint sources

• Primarily high flows exceedances \rightarrow nonpoint sources
 – High flows usually linked to higher rainfall events; surface runoff which can carry pollutants to the stream

• Primarily low flows exceedances \rightarrow point sources
 – Low flows usually linked to no runoff entering the stream and primarily direct discharges contributing
LDC – Estimate of Pollutant Loads

Load Duration Curve (EFU 8042546; n=43)

- High Flows: 84% reduction needed
- Mid-Range Flow Conditions: 30% reduction needed
- Low Flow Conditions: 0% reduction needed

Note the blue line has crossed and is under the red line (in compliance) at this point.
Trinity Bay

• Winds are the dominating factor in circulation patterns
 – tides and freshwater inflows also influencing factors
• Trinity and San Jacinto rivers = majority of freshwater inflows
• Inflow seasonality
 – Spring rains = largest volume of freshwater inflows (April & May)
 – During this time, salinity in Trinity Bay can drop to 0 psu (practical salinity unit)
 – Normal conditions = @10 psu
 – Typical low-flow season @ July-October
Double Bayou

- Trinity Bay’s circulation patterns contribute to Double Bayou’s flow patterns
- The tidal influence is relatively weak in this shallow estuary system, but there are tidal effects
 - As the tide comes in (whether due to direct tidal flow or wind patterns), water flows up the bayous
 - Strongest observed response at the lower West Fork sampling station (closest station to Trinity Bay)
Bacteria Loadings

- Enterococci sample concentration measured for the day multiplied by total Volume for the day results in the calculated daily load for each sample (units of cfu/day, total sample size for West Fork Lower was 46)

- Maximum allowable load was calculated in the same manner, using the maximum allowable Enterococci standard of 35 cfu/100 mL

\[
\text{Daily Load} \left(\frac{\text{cfu}}{\text{day}} \right) = V_t \left(\frac{m^3}{\text{day}} \right) \times C \left(\frac{\text{cfu}}{100 \text{ mL}} \right) \times 1,000,000 \left(\frac{\text{mL}}{m^3} \right)
\]

Total amount of water accumulated in our “bowl” during the day

The bacteria grab sample concentration

Conversion factor for units
Load Reduction Goal

- As with the percent reduction goal determined by LDC analysis, the percent exceedance categories were evaluated.
- As opposed to categorizing by flow, such as with the LDC analysis, the focus was on the categories themselves and distribution within each category.
- Categories based on distribution frequency.

<table>
<thead>
<tr>
<th>Percent Exceedance Category</th>
<th>Number of % exceedances in each category</th>
<th>Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-100%</td>
<td>17</td>
<td>90%</td>
</tr>
<tr>
<td>40-74%</td>
<td>15</td>
<td>59%</td>
</tr>
<tr>
<td>Under 0 (meeting criteria) - 39%</td>
<td>14</td>
<td>-1044%</td>
</tr>
</tbody>
</table>

How can we achieve load reduction goals?
Negative Discharge – Tidal Mixing dilutes Bacteria

- Statistical analysis conducted on the bacteria samples in the categories of positive discharge and negative discharge
- Showed that the Enterococci levels of negative and positive flows at WFL are statistically different
- Negative flow samples’ percent exceedance was **18%** and the positive flow samples’ percent exceedance was **94%**
- Conclusion: tidal mixing dilutes the bacteria concentration and the resulting bacteria loads would not exceed the regulatory load, during negative flow sample periods.
Bacteria Loadings

• Irregular flow pattern at West Fork Lower → LDC approach basing pollutant loadings on flow regimes would not work

• Little correlation between positive flow and bacteria concentration for West Fork Lower
 – Likely due to the wind-driven nature of the system – periods of intense rainfall will often be accompanied by high winds, causing erratic flow patterns.

• One note here – strong connection between bacteria results for targeted rain events compared to non-rain event samples.
 – Targeted rainfall event samples: Enterococci had a 100% exceedance rate
• Conclusion from previous slide is based on the assumption that the Bay is not a source of bacteria – which is true

• Analyzed bacteria data from the four stations in the figure, data from 2001-2014

• Geomean of the Enterococci from these years (46 samples) is 7.6; of these, the most recent samples (20 of the 46) have a geomean of 6.6
- Designated Use: Aquatic Life
- Low Dissolved Oxygen levels can indicate an excessive demand on the oxygen in the system.

< 0.5 mg/L *Anoxic* – Oxygen dependent animals die
< 3 mg/L *Hypoxic* - Most aquatic organisms cannot survive
 4-5 mg/L *Aquatic organisms become stressed*
> 6 mg/L *Optimal for many aquatic organisms*
Dissolved Oxygen

- **Time dependent**
 - Plants don’t produce oxygen during the night - but oxygen is still being used then for respiration, so dissolved oxygen (DO) concentrations will be the lowest in a water body in the morning.

- **Temperature dependent**
 - The colder the water, the greater capacity it has to hold oxygen.
Dissolved Oxygen

- **Salinity dependent**
 - As salinity in water increases, its ability to hold DO decreases.
 - But DO decreases more as temperature goes up regardless of salinity.

- **Event dependent**
 - DO can go up right after a rainfall because fresh rain water, which is high in DO, is flushed into the system.
 - After a lag period, the DO may go down because of increased bacteria in the runoff leading to increased decomposition.
Variation in Dissolved Oxygen and Water Temperature:
Double Bayou (not including WWTP)

- R² = 0.4954
- R² = 0.681
<table>
<thead>
<tr>
<th>Subwatershed</th>
<th>Animal Units</th>
<th>Number of Farms per Subwatershed</th>
<th>Recommended Number of WQMPs*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>320</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>243</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>353</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>457</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>39</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>175</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>105</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>299</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>237</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>11</td>
<td>149</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>12</td>
<td>226</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>45</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>712</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>15</td>
<td>174</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>332</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>43</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>110</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>356</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>115</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>22</td>
<td>134</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>4631</td>
<td>122</td>
<td>52</td>
</tr>
</tbody>
</table>