Tidal Restoration Reduces CH$_4$ Emissions in Salt Marshes: A Case Study from Casco Bay, Maine

Beverly Johnson, Bates College
Cailene Gunn (Geology ‘16), Bates College
Curtis Bohlen, Casco Bay Estuary Partnership
Philip Dostie, Bates College
Matt Craig, Casco Bay Estuary Partnership

** Special Shout Out to Hollie Emery and Wally Fulweiler**
Schematic of GHG Budgets in Saltmarshes

(from Johnson et al., in press)
It follows that CH$_4$ emissions rates are variable as well...
Salinity vs CH$_4$ Flux

Poffenbarger et al., (2011)
Purpose of This Talk

- Generate CH4 emissions factors associated with tidal restoration.
- Identify a potential vegetation proxy for CH₄ emissions.
- Explore the carbon benefits associated with tidal restoration at Long Marsh, Harpswell ME.
MAINE ~5600 km Coastline
82 km2 Salt Marsh
128 km2 Eelgrass Beds
MAINE SALT MARSH GEOMORPHOLOGY

(From Kelley et al., 1988)
Maine Coastal Compartments
(after Jacobson et al., 1987)
Sebascodegan I.
Harpwell, ME

Famous Maine Saying:

“You can’t get they’ah from he’ah.”
Long Marsh, Harpswell ME

- Old Road Crossing
- Dredge Spoils
- Undersized Culvert
Mouth of Long Reach Creek
pre and post restoration

Undersized Culvert, 2009

Expanded Culvert, 2014
Pre-Post Restoration:
Typha Mortality and Salinity Change

Before (July 2013)

GW Salinity = 8 PSU

After (July 2014)

Pore Water Salinity = 26 PSU
Post Restoration: Typha Mortality (July 2015)

Transitional Zone = Dead Typha
Study Design

- Pre- and Post-Restoration Monitoring (CBEP)
 2013, 2014 thru 2018
 - Vegetation Composition
 - Marsh Elevation
 - GW salinity and hydrology

- CH4 Emissions at Range of Salinities (Bates)
 - 2015, 2016, 2017 (?)
 - Static Chamber Field Sampling and GC-FID Analysis
 - Carbon benefits:
 CH4 emissions of fresh site * Area fresh lost * Time
Typha Mortality and Vegetation Change

Area live *Typha*:

- **2013 (pre):** 3.37 ha
- **2015 (post):** 0.26 ha
Vegetation Response

Salinity index based on Verrill 2015
CH4 SAMPLING SITES

FRESH
BRACK
TRAN W
TRAN E
SAL

July, 2015

Salinity (ppt)
- 1.00 - 6.00
- 6.01 - 16.0
- 16.1 - 22.0
- 22.1 - 27.0
- 27.1 - 30.0
Chamber Results: CH₄ (ppm) vs Time

Fresh C1 (8/14/15)

\[y = 0.0186x + 1.9245 \]
\[R^2 = 0.7243 \]

Fresh C1 (7/29/15)

\[y = 0.1553x + 3.0821 \]
\[R^2 = 0.9892 \]

Saline C1 (8/14/15)

\[y = 9E^{-05}x + 1.7478 \]
\[R^2 = 0.0014 \]

Brack C1 (8/14/15)

\[y = 0.0047x + 1.7188 \]
\[R^2 = 0.7688 \]
Long Marsh (in Blue)

(modified after Poffenbarger et al., 2011)
Average CH$_4$ Flux for Each Site
July, August & October

<table>
<thead>
<tr>
<th>Site</th>
<th>July</th>
<th>August</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FRESH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRACK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAN W</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flux (µmol CH$_4$/m2/hr)
Carbon Benefits (Reduction in CH$_4$ Emissions)

- Avg CH$_4$ flux in Typha = 61.8 umoles CH$_4$/m2 hr

- Restoration resulted in loss of Typha habitat (3.1 ha)

- “3-Month” Reduction in CH$_4$ emissions since restoration
 ~ 70 kg CH$_4$ (~1750 kg CO$_2$e)
128 Candidate Restoration Sites

Tidal Restrictions

Field Data 2012
- Yes
- No
Preliminary Conclusions

1. Avg CH$_4$ flux in Typha = 61.8 umoles CH$_4$/m2 hr

2. Avg CH$_4$ flux in transitional areas = 6.4 umoles CH$_4$/m2 hr

3. Typha = Good proxy for salinity and CH$_4$ emissions.
 - 1.5 years after tidal restoration, Typha die-back was thorough and accompanied by minimal CH$_4$ emissions.

4. At Long Marsh, “3-month” reduction in CH$_4$ emissions of ~70 kg.
Questions?
Maine Coastal Compartments
(after Jacobson et al., 1987; Kelley et al., 1988)

- Back Barrier Marshes (26.4 km²)
- Stream Valley Marshes (27.4 km²)
- Small Fringing Marshes (20.6 km²)
- Isolated Marshes (4.5 km²)
- Arcuate Embayments
- Indented Shoreline
- Cliffed Shoreline
- Island-Bay Complex
Tidal Restrictions
Reducing Conditions in Flooded Soils

From https://microbewiki.kenyon.edu/index.php/Central_Metabolism_(Flooded_soils)
Elevation Profiles from LIDAR

Old Road Crossing

Undersized Culvert
CH₄ Flux Measurements

At each site-
- 3 collars (to seat 3 chambers)
- Gas sampled 7x over 40 mins
 (after Emery and Fulweiler, 2014)

[CH₄] measured via GC-FID using a Supelco Carboxen 1006 PLOT Column, in the EGL at Bates.

Final flux calculations using Ideal Gas Law and surface area.
Research Questions

- How does restoration of salt marsh hydrology impact CH4 emissions, salinity, and vegetation?
- Over what time-scales?
Remove Tidal Restrictions = Recovery

(from Burdick et al., 1997)
Long Marsh, Harpswell ME
Impact of Tidal Restrictions

- Reduce salt water flooding/Freshen the salt marsh
- Change vegetation
- Increase water on marsh
- Reduce sediment inputs
- Decrease in fish and nutrient exchange with adjacent estuary

- Expect an increase CH$_4$ emissions (Where? How much? Why?)