The Ecology, Engineering & Economics of Natural Coastal Defenses

Michael W. Beck
Borja Reguero
Siddharth Narayan

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

LLOYD'S
TERCENTENARY RESEARCH FOUNDATION

Swiss Re

GUY CARPENTER

The Nature Conservancy
Coastal Funding for Conservation & Infrastructure (10 Yrs)

$300
$198
$214
$4
$14

Dr. McCrless & Beck. In review. Rethinking our global coastal investment portfolio. *Journal of Ocean & Coastal Economics*
Chapters 4 & 5: Recommended Approach for Assessing Coastal Protection Value: Expected Damage Function

STAGE 1: Estimate Waves Offshore
STAGE 2: Estimate Waves Nearshore
STAGE 3: Estimate Effects of Habitats
STAGE 4: Estimate Flooding
STAGE 5: Assess Damages

10 yr with Habitat
10 yr w/out Habitat

Storm Freq.
Chapter 3: Reefs & Coastal Protection

Hurricane Wilma

Incident wave energy $\times 10^3$ (Jm$^{-2}$)

Wave energy dissipated $\times 10^3$ (Jm$^{-2}$)

Adapted from Ferrario, Beck et al. 2014. *Nature Communications*
Coastal Wetlands and Flood Damage Reduction: Using Risk Industry-based models to Assess Natural Defenses in the Northeast US

www.lloyds.com/coastalresilience
Scenario I: Present-day Wetlands

Wetlands with roughness coefficients of 0.04 - 0.1
Scenario II: Wetland Loss to Open Water

All wetlands as open water with roughness of 0.02
Wetland Effects on Property Damage Reduction during Hurricane Sandy

Difference in Flood Damages Between Wetland Scenarios

- 625 Million US$
- 12 States

www.lloyds.com/coastalresilience
Wetland Effects on Property Damage Reduction during Hurricane Sandy

Difference in Flood Damages Between Wetland Scenarios

<table>
<thead>
<tr>
<th>State</th>
<th>At Present ($)</th>
<th>With Wetland Loss ($)</th>
<th>Absolute Difference ($)</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>2,181,600,000</td>
<td>2,181,000,000</td>
<td>400,000</td>
<td>0.02</td>
</tr>
<tr>
<td>Delaware</td>
<td>228,100,000</td>
<td>251,900,000</td>
<td>23,800,000</td>
<td>10.43</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>1,452,300,000</td>
<td>1,458,600,000</td>
<td>6,300,000</td>
<td>0.43</td>
</tr>
<tr>
<td>Maryland</td>
<td>15,500,000</td>
<td>20,000,000</td>
<td>4,500,000</td>
<td>29.03</td>
</tr>
<tr>
<td>Maine</td>
<td>17,600,000</td>
<td>17,600,000</td>
<td>3,000*</td>
<td>0.02</td>
</tr>
<tr>
<td>North Carolina</td>
<td>9,500,000</td>
<td>8,800,000</td>
<td>-600,000</td>
<td>-6.47</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>29,600,000</td>
<td>30,500,000</td>
<td>900,000</td>
<td>3.04</td>
</tr>
<tr>
<td>New Jersey</td>
<td>14,014,600,000</td>
<td>14,443,300,000</td>
<td>428,700,000</td>
<td>3.06</td>
</tr>
<tr>
<td>New York</td>
<td>32,314,600,000</td>
<td>32,452,800,000</td>
<td>138,200,000</td>
<td>0.43</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>174,400,000</td>
<td>188,000,000</td>
<td>13,700,000</td>
<td>7.86</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>72,100,000</td>
<td>72,400,000</td>
<td>300,000</td>
<td>0.42</td>
</tr>
<tr>
<td>Virginia</td>
<td>195,400,000</td>
<td>205,300,000</td>
<td>9,900,000</td>
<td>5.07</td>
</tr>
</tbody>
</table>
Wetland Effects on Public Infrastructure
Surge Height Reduction by Wetlands on Highways and Major Roads

<table>
<thead>
<tr>
<th>State</th>
<th>Length of Roads Protected (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>30.26</td>
</tr>
<tr>
<td>Delaware</td>
<td>502.60</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>94.63</td>
</tr>
<tr>
<td>Maryland</td>
<td>435.81</td>
</tr>
<tr>
<td>Maine</td>
<td>0.80</td>
</tr>
<tr>
<td>North Carolina</td>
<td>28.49</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>40.07</td>
</tr>
<tr>
<td>New Jersey</td>
<td>333.13</td>
</tr>
<tr>
<td>New York</td>
<td>300.63</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>41.68</td>
</tr>
<tr>
<td>Rhode Island</td>
<td>17.06</td>
</tr>
<tr>
<td>Virginia</td>
<td>403.95</td>
</tr>
<tr>
<td>Total</td>
<td>2,228.94</td>
</tr>
</tbody>
</table>
Key Findings

Flood Reduction Benefits from Wetlands

1. Catastrophic Events:
 - >625 Million US$ during Hurricane Sandy
 - >10% on average where wetlands remain

2. Annual Flooding Losses:
 - Properties with marshes save >20%
 - Benefits most significant in low elevation, high-risk areas

3. Wetland Conservation and Restoration:
 - Can reduce risk from extreme event flooding
 - Can provide benefits to communities upstream
Partnership with Swiss Re

Where are nature-based defenses cost effective?

Aims

- Work with worlds 2nd largest re-insurer
- Public cost effectiveness model that includes nature
- Add ecosystem (co)benefits

The regional domain: The Gulf Coast of US

>3,200 Nodes (Zipcodes) to register Hazards and Damages
Effects of Economic Growth & Climate Change on Losses

Expected Loss (bill.$)

Present Climate

Added Risk - Future Economic Growth

Added Risk - Climate Change

Return Period (yr)
Risk Reduction Measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wetland Restoration</td>
<td>6 Counties with the highest losses in assets where at least 25 miles of salt marsh could be restored by bay.</td>
</tr>
<tr>
<td>Wetland Conservation</td>
<td>125 miles of wetlands protected</td>
</tr>
<tr>
<td>Local Levees Priority</td>
<td>6 ft “hills” built to protect 532,000 existing houses on the 6 counties that experience most damages</td>
</tr>
<tr>
<td>Sandbags</td>
<td>Used in 2.9 million houses for all Cat 3 hurricanes across all counties in the study area.</td>
</tr>
<tr>
<td>Local Floodwalls</td>
<td>Concrete blocks (4 ft) built to protect 1.9 million houses across all counties</td>
</tr>
<tr>
<td>Levees</td>
<td>20 ft levees constructed around Houma & New Orleans, LA - 340 miles.</td>
</tr>
<tr>
<td>Barrier Island Restoration</td>
<td>All Mississippi coastal counties</td>
</tr>
<tr>
<td>Oyster Reef Restoration</td>
<td>1000 miles restored in all counties with high suitability</td>
</tr>
<tr>
<td>Beach Nourishment</td>
<td>All Coastal Counties in Texas.</td>
</tr>
<tr>
<td>Home Elevation</td>
<td>Elevate 481,841 existing houses by 8ft in 6 counties that experience the most damages</td>
</tr>
</tbody>
</table>
Benefit: Cost Analysis – Measures for Climate Adaptation

Averted Damages over 20 years ($ Billions)

Benefit/Cost

Sandbag
Oyster restoration
Floodwall
Marsh – Risk Red.
Marsh Conservation
Local Levees

COASTAL RESILIENCE

GULF OF MEXICO

Set Model Parameters

Model Form: Best
Economy: High
Defense: None
Reference Year: 2030

Barrier Island Restoration
Oyster Reef Restoration
Wetland Restoration
Beach Nourishment
Home Elevation
Sandbag
Levee

Benefit:Cost Line

Averted Damages ($Billion*10)

Percentage of Damages Averted
Oyster Reefs, 2050 Estimated Averted Damages

15.5% - 18.9%
13.1% - 15.4%
10.5% - 13.0%
8.9% - 10.4%
5.6% - 8.8%

www.maps.coastalresilience.org/Gulfmex
GIS Layers for Roads and Infrastructure – Road line classes broken down into 5-m segments
GIS Layers for Roads and Infrastructure – Road line classes broken down into 5-m segments
Hi Resolution Valuation of Coral Reef Protection Across the USA

TNC UCSC USGS
Summary

- Coastal Habitats - a First Line of Defense
- We can Account for Natural Defenses
- They are Cost Effective
- Decision support tools can inform their use
Thanks