Vegetation Recovery of Coastal Salt Marshes Impacted by the Deepwater Horizon Oil Spill

Qianxin Lin1, Irv Mendelssohn1, Sean Graham2
Aixin Hou1, John Fleeger1, Don Deis3

1Louisiana State University
2Nicholls State University
3Atkins
Northern Barataria Bay Study Sites
Heavily Oiled Marshes
(January 2011)
Moderately Oiled Marshes
(January 2011)
Three Oil Categories:

- Reference Marshes
- Moderately Oiled Marshes
- Heavily Oiled Marshes

Ten Sampling Events:

- 2011 (Jan & Oct)
- 2012 (April & Nov)
- 2013 (April, Sept & Nov)
- 2014 (April & Nov)
- 2015 (June)
Objective

Evaluate the impact of the Deepwater Horizon oil spill on salt marsh vegetation and assess the subsequent recovery.
Total Petroleum Hydrocarbons (0-2cm)

Soil TPH Concentration (mg/g dry soil) vs. Months After Spill for RF, MD, and HV sites.

Oil: p<0.0001
Time: p<0.0001
Oil*Time: p<0.05
Total Live Aboveground Biomass

Oil: p<0.0001
Time: p<0.0001
Oil*Time: p<0.0001
Live Aboveground Biomass of *S. alterniflora*

- **Oil**: p < 0.01
- **Time**: p < 0.0001
- **Oil*Time**: p < 0.005
Live Stem Density of *S. alterniflora*

Oil: p=0.12
Time: p<0.0001
Oil*Time: p<0.0001
Live Aboveground Biomass of *J. roemerianus*

- **Oil:** $p<0.005$
- **Time:** $p<0.0005$
- **Oil*Time:** $p<0.005$

Graph Description:
- The graph shows the live aboveground biomass (g/m²) of *J. roemerianus* over different months after a spill.
- The x-axis represents months after the spill, ranging from 9 to 62.
- The y-axis represents the biomass in g/m², ranging from 0 to 1000.
- Three conditions are compared: RF (green), MD (orange), and HV (black).
- Significant differences are indicated by circles around the bars for each condition.

Statistical Significance:
- The oil treatment has a significant effect on live aboveground biomass.
- Time also has a highly significant effect.
- The interaction between oil and time is also significant.
Live Stem Density of *J. roemerianus*

Oil: $p<0.005$
Time: $p<0.0005$
Oil*Time: $p<0.05$
Live Belowground Biomass in 0-6 cm soil

Oil: p<0.0001
Time: no sig.
Oil*Time: no sig.
Soil Shear Strength in 0-6 cm soil

Oil: $p<0.05$
Time: no sig.
Oil*Time: $p<0.0001$
Conclusions

- TPH in heavily oiled marshes was significantly higher although it decreased with time.
- Vegetation has generally recovered in moderately oiled marshes within 2-3 years.
- For heavily oiled marshes, *Spartina* recovered in about 3 years. However, no recovery of *Juncus* occurred. Overall vegetation did not fully recover 5 years after the spill.
- Vegetation structure changed from a mixed *Spartina-Juncus* community to mostly *Spartina*.
- Impacts of heavy oiling on belowground biomass and soil shear strength potentially affect marsh stability.
Acknowledgements

This research was made possible by grants from The Gulf of Mexico Research Initiative

Field Support:

Joe Baustian, John Cross, Corwin Hess and Grace Calge