INTEGRATION OF COASTAL/INLAND SURFACE WATER AND GROUNDWATER

Ehab Meselhe
Mead Allison
Scott Hemmerling

Eric White
Francesca Messina
Ryan Clark

2017 COASTAL MASTER PLAN

Restore America’s Estuaries 8th National Summit | December 2016
Acknowledgements

CPRA Lead
- Mandy Green
- Angelina Freeman
- David Lindquist

PM-TAC Team
- Courtney Harris (VIMS)
- John Callaway (USFCA)
- Mike Waldon
- Scott Hagen (LSU)
- Wim Kimmerer (SFSU)

Water Institute Lead
- Denise Reed
- Ehab Meselhe

Modeling Team
- Eric White (WI)
- Ann Hijuelos (WI)
- Yushi Wang (WI)
- Joao Pereira (WI)
- Alaina Owens (WI)
- Scott Hemmerling (WI)
- Leland Moss (WI)
- Alex McCrorquodale (UNO)
- Stokka Brown (M&N)
- Jonathan Wang (M&N)
- Mallory Rodrigue (CHF)
- Jenni Schindler (CHF)
- Jenneke Visser (ULL)
- Scott Duke-Sylvester (ULL)
- Robert Romaine (LSU)
- Vadim Alymov (CECI)
- Michael Poff (CECI)
- Brady Couvillion (USGS)
- Craig Conzelmann (USGS)
- Hardin Waddle (USGS)
- Kevin Suir (USGS)
- David Johnson (RAND)
- Kenneth Kuhn (RAND)

- Jordan Fischbach (RAND)
- Gordon Thomson (CB&I)
- Zhifei Dong (CB&I)
- Hugh Roberts (Arcadis)
- Zach Cobell (Arcadis)
- John Atkinson (Arcadis)
- Haihong Zhao (Arcadis)
- Kim de Mutsert (GMU)
- Kristy Lewis (GMU)
Conceptual Water Budget

Upland Zone

Surface Water

Ground Water

Coastal Zone

Surface Water
Integrated Compartment Model (ICM)
ICM Model Hydraulic Link Network

Contains 946 ICM compartments
Estuary and Open Water Processes

- Hydrodynamics
- Water quality
- Sedimentation
- Bed resuspension
- Sediment distribution
Wetland Processes and Vegetation

- Wetland elevation change
- Wetland area change
- Marsh collapse
- Marsh edge erosion
- Storm effects
- Coastal vegetation
Fish and Shellfish

• 19 fish, shellfish, and wildlife Habitat Suitability Indexes (HSIs)
 – Statistical analysis
 – Revised equations from 2012
 – Added several new HSIs
 – Coded into the ICM

• EwE (Ecopath with Ecosim)
 – Community fish and shellfish model
 – Dynamically coupled to the ICM
Model Calibration and Validation
Data used to calibrate water level, salinity, & vegetation.
Stage Calibration – 201 sites

Stage - 2010-2013 - ICM_ID: 92 - PB - Brant Island (Breton)

- **Observed data:** CRBM3448-H01_STG
- **Daily R-squared:** 0.95
- **Monthly R-squared:** 0.76
- **Monthly RMSE:** 0.09 m
- **Bias:** -0.08 m

Stage - 2010-2013 - ICM_ID: 280 - PB - N Barataria Bay

- **Observed data:** 07380251_STG
- **Daily R-squared:** 0.58
- **Monthly R-squared:** 0.74
- **Monthly RMSE:** 0.07 m
- **Bias:** -0.03 m

Stage - 2010-2013 - ICM_ID: 545: AA - Atchafalaya River @ Morgan City

- **Observed data:** 07390441_STG
- **Daily R-squared:** 0.97
- **Monthly R-squared:** 0.98
- **Monthly RMSE:** 0.11 m
- **Bias:** 0.07 m

Stage - 2010-2013 - ICM_ID: 796 - CP - Mud Lake (CP)

- **Observed data:** CRBM3098-H01_STG
- **Daily R-squared:** 0.54
- **Monthly R-squared:** 0.55
- **Monthly RMSE:** 0.12 m
- **Bias:** -0.02 m
Salinity Calibration Example

Salinity - 2010-2013 - ICM_ID: 247 - PB - Wilkinson Bayou (E Barataria)

- **Observed data:** CR1830517-H01_SAL
- **Daily R-squared:** 0.67
 - **Monthly R-squared:** 0.70
 - **Daily RMSE:** 2.40 ppt
 - **Monthly RMSE:** 2.22 ppt
 - **Bias:** 0.02 ppt

Model (entire period):
- Mean: 7.90
- Median: 7.03
- SD: 3.87
- Min: 1.60
- Max: 27.17

Model (days with observations):
- Mean: 7.93
- Median: 7.67
- SD: 3.86
- Min: 1.60
- Max: 27.17

Observed:
- Observations: 1448
- Mean: 7.43
- SD: 4.65
- Min: 0.34
- Max: 21.32

Salinity - 2010-2013 - ICM_ID: 373 - AA -

- **Observed data:** CR1830538-H01_SAL
- **Daily R-squared:** 0.66
 - **Monthly R-squared:** 0.76
 - **Daily RMSE:** 2.35 ppt
 - **Monthly RMSE:** 1.81 ppt
 - **Bias:** 0.19 ppt

Model (entire period):
- Mean: 18.05
- Median: 18.15
- SD: 3.92
- Min: 9.04
- Max: 26.61

Model (days with observations):
- Mean: 18.08
- Median: 18.21
- SD: 3.53
- Min: 9.04
- Max: 26.61

Observed:
- Observations: 1429
- Mean: 17.99
- SD: 3.95
- Min: 5.43
- Max: 26.10

Salinity - 2010-2013 - ICM_ID: 486 - AA -

- **Observed data:** CR1830587-H01_SAL
- **Daily R-squared:** 0.00
 - **Monthly R-squared:** 0.00
 - **Daily RMSE:** 0.12 ppt
 - **Monthly RMSE:** 0.13 ppt
 - **Bias:** -0.04 ppt

Model (entire period):
- Mean: 0.17
- Median: 0.18
- SD: 0.04
- Min: 0.10
- Max: 0.50

Model (days with observations):
- Mean: 0.17
- Median: 0.18
- SD: 0.04
- Min: 0.10
- Max: 0.50

Observed:
- Observations: 1455
- Mean: 0.21
- SD: 0.11
- Min: 0.10
- Max: 2.04

Salinity - 2010-2013 - ICM_ID: 863 - CP -

- **Observed data:** CR1830085-H01_SAL
- **Daily R-squared:** 0.55
 - **Monthly R-squared:** 0.61
 - **Daily RMSE:** 4.45 ppt
 - **Monthly RMSE:** 4.13 ppt
 - **Bias:** -0.60 ppt

Model (entire period):
- Mean: 16.68
- Median: 16.68
- SD: 5.20
- Min: 5.38
- Max: 26.78

Model (days with observations):
- Mean: 16.63
- Median: 16.68
- SD: 5.46
- Min: 5.38
- Max: 26.78

Observed:
- Observations: 1294
- Mean: 17.24
- Median: 17.32
- SD: 6.45
- Min: 3.29
- Max: 34.38
Integrated Water Management System

Upland Zone

Surface Water
Integrated Water Management System
Integrated Water Management System

Some updates and improvements needed

Ground Water
Integrated Water Management System

Upland Zone

Coastal Zone

Surface Water

Ground Water
Integrated Water Management System
Summary

• Considerable funds and effort already devoted to develop these individual components
• Integrating the components provides a comprehensive water management tool
• Integrated tool can be used to:
 – Manage current and projected resources
 – Support decision making process
 – Support development of policies
Questions