SLR-Driven Changes in Mouth Closure and Stratification in Intermittently Open Estuaries

Restore America’s Estuaries, December 10, 2018

John Largier, UC Davis, Bodega Marine Laboratory
Dane Behrens, Environmental Science Associates
Outline

What is an Intermittently Open Estuary?

The continuum of estuary types in southern CA
• Hydrology
• Geological setting
• Management
• Stratification

Dominant Processes in IOE’s

Potential influences of SLR
What is an Intermittently Open Estuary?

January 2, 2016 07:20:00

[Diagram showing tides and waves with labels: Ocean Tide, Lagoon Tide, Waves (NDBC 46218), Hs (m), Tp (sec)]

created by ESA with funding from UCSB
Continuum of Estuaries in Southern CA

- Each wetland archetype is influenced by an estuary mouth
- Each estuary mouth lies on a continuum from \textit{permanently closed} to \textit{permanently open}

Major differences in estuarine wetland conditions resulting from differences in:
- Hydrology
- Geological setting
- Management
- Stratification
Estuary Continuum in Southern CA: Role of Hydrology

Wet Season: High flows scour open the mouth. Lagoon hydrology influenced by ocean tides.

Dry Season: Low flows unable to prevent waves from depositing sediment. If basin is large, tidal flows alone may keep the mouth open.
Estuary Continuum in Southern CA: Role of Hydrology

Wet Season: High flows scour open the mouth. Lagoon hydrology influenced by ocean tides.

Dry Season: Low flows unable to prevent waves from depositing sediment. Mouth Closes. WL rises.

Dry Season: Inflows become weaker than losses to evaporation, seepage.

Wet Season: First major rainfall event fills lagoon, opens mouth.

![Graph showing changes in water levels over time](image)
Estuary Continuum in Southern CA: Role of Geology

- Influences basin size and tidal prism
- Influences availability of sediment for building the beach
- California influenced by strong uplift and regional variations in geology (Jacobs, Stein, Longcore 2010)
• Structures, dredging maintain open-mouth conditions in some systems
• Infrastructure limits potential for upland transgression
• Management of mouth closures (breaching) affect seasonal hydrology cycle
• Beach conditions influenced by nourishment activities
Estuary Continuum in Southern CA: Stratification

Open–mouth conditions
- Strong tidal mixing
- Gradient from salty at mouth to fresher upstream

Closed–mouth conditions
- No tidal mixing
- Salty layer sinks to the bottom
- Vertical mixing possible in shallow estuaries
- Long residence time of saltwater in deeper pockets, or deep estuaries
What Processes Contribute to Estuary Mouth Closure?

- Larger Basin, Higher Streamflow
- More Wave Exposure

Usually closed or perched
Intermittently closed
Always Open
What Processes Contribute to Mouth Opening (‘Breaching’)?

- Beach seepage
- Freshwater runoff
- Evapotranspiration

- For weak inflows or large basins, it may take months or years to reach breach height
- As beach rises with SLR, time to breach will increase

Courtesy of Kenneth and Gabrielle Adelman
What Do We Expect to Change with SLR?

- More Wave Exposure
- Larger Basin, Higher Streamflow
- How Long It Takes to Breach
- Beach Height
- Beach Height Increases

Basin size increases IF SLR outpaces accretion

Increase in depth of estuary AND depth of trapped saltwater

Hydrologic, geologic, mgmt context matters
Potential Response to SLR: Small/constrained lagoons

- Upward and landward movement of the beach
- Limited upland transition space
- If SLR outpaces accretion in lagoon:
 - Slight increase in estuary volume
 - In wave-exposed regions, mouth will still close due to wave action
 - Longer closed-mouth conditions, since greater volume to fill
 - Greater depth and volume of trapped saltwater, less likely for vertical mixing
Potential Response to SLR: Large/Unconstrained Estuaries

- Upward and landward movement of the beach
- Greater upland transition space
- If SLR outpaces accretion in lagoon:
 - Progressive increase in estuary volume and depth
 - Longer periods of open-mouth conditions (greater tidal prism)
 - Longer closed-mouth conditions (larger volume to fill to beach level)
 - Greater depth and volume of trapped saltwater, less likely for vertical mixing
- Net change in seasonal conditions depends on water balance
Potential Response to SLR: Estuaries with urban infrastructure

- Upward and landward movement of the beach
- Limited upland transition space
- If SLR outpaces accretion in lagoon:
 - Progressive increase in estuary volume and depth
 - Seasonal hydrology constrained by mouth management
 - Increase in closure/breach events constrain the hydrology
 - Greater depth and volume of trapped saltwater, but increased need for breaching → salinity influenced by number of breach events
Potential Response to SLR: Conclusions

• SLR will result in upward shift of estuary WLs, but the amount depends on morphology feedback, which is shaped by regional contexts (Doughty et al. 2018)

• Expected feedback with accretion rates (Thorne 2016, 2018)

• High level of uncertainty at this time due to multiple feedbacks

• Need for continued and focused monitoring in near future
Thank you!