Blue Carbon Project Design:
Early Lessons Learned from the U.S. Gulf and East Coasts

Erin Swails, PhD
Manager Forestry and Technical Services
TerraCarbon
National Summit on Coastal and Estuarine Restoration and Management
December 11, 2018
Blue Carbon Feasibility Studies

Port Fourchon, LA

Herring River, MA

Goodland, FL

Delaware Bay

Eastern Shore, VA
Blue Carbon Project Design: Key Insights

1. Data needs and gaps
2. Land tenure and carbon ownership issues
3. Project scale considerations
Blue Carbon Data Needs and Gaps

- Soil organic carbon
 - soil carbon stocks
 - accretion/subsidence

- Biomass
 - above- and belowground carbon stocks

- Sea Level Rise

- CH$_4$ / N$_2$O emissions
 - pre-restoration flux
 - salinity
Measuring methane

Important where hydrology (salinity) has changed

Low CH$_4$ emissions in high salinity (>18ppt)
→ measure salinity and use default values

High CH$_4$ emissions in low salinity (<18ppt)
→ variable, no default
→ degraded, little research, hard to apply
→ measure or model CH$_4$

Poffenbarger et al. 2011
Land Tenure and Blue Carbon Ownership

Public lands:

→ Research to support GHG accounting
→ Restoration is mission aligned
→ But...often unclear if state and federal land management agencies can enter into carbon transactions

Subtidal zones may present unique challenges

Herring River, MA

Eastern Shore, VA
Importance of Scale - Illustrative Example

5 generic project types
➔ Marsh restoration (revegetation), marsh restoration (tidal restoration, low and high CH_4), mangrove restoration, seagrass restoration

Soil carbon
➔ 1.46 tons of C/ha/yr for marshes and mangroves (default), 0.43 tons of C/ha/yr for seagrass (IPCC), 0.00 tons C/ha/yr for unvegetated

Soil methane
➔ 0.75 tons of CH_4/ha/yr (High) and 0.16 tons of CH_4/ha/yr (Low) based on literature synthesis, medians for oligohaline (0.5-5 ppt) and mesohaline (5-18 ppt)

Biomass carbon
➔ 3.5 tons CO_2/ac/yr for mangroves (FL), 0.0 tons CO_2/ac/yr for vegetated or unvegetated
Importance of Scale - Illustrative Example

Non-permanence buffer - 15%

Carbon prices - $5.00 and $10.00/ton

Carbon costs - $150k upfront, $50k every 5 years
Illustrative Example: Offsets/acre/year
Scale to break even @ $5.00/ton

Scale to Break Even Cash Flows over 20 years
@ $5.00/ton carbon price

<table>
<thead>
<tr>
<th>Restoration Type</th>
<th>Acres</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marsh Restoration (revegetation)</td>
<td>1,900</td>
</tr>
<tr>
<td>Marsh Restoration (tidal CH4)</td>
<td>2,543</td>
</tr>
<tr>
<td>Marsh Restoration (high CH4)</td>
<td>542</td>
</tr>
<tr>
<td>Mangrove Restoration</td>
<td>727</td>
</tr>
<tr>
<td>Seagrass Restoration</td>
<td>6,451</td>
</tr>
</tbody>
</table>
Scale to break even @ $10.00/ton

Scale to Break Even Cash Flows over 20 years
@ $10.00/ton carbon price

- Marsh Restoration (revegetation): 950 acres
- Marsh Restoration (tidal restoration-low CH4): 1,271 acres
- Marsh Restoration (tidal restoration-high CH4): 271 acres
- Mangrove Restoration: 363 acres
- Seagrass Restoration: 3,225 acres
Summary: Lessons Learned

1) Data rich sites can be good blue C incubators
2) Public lands and subtidal zones have unique advantages/disadvantages
3) Bigger (may) be better