PILOT EFFORTS TO MITIGATE DITCHING IMPACTS AT A NORTHEAST NATIONAL WILDLIFE REFUGE

David Burdick¹, Susan Adamowicz², Gregg Moore¹, Chris Peter¹, Devin Batchelder¹, Nancy Pau² and Geoff Wilson³

¹ Jackson Estuarine Laboratory, University of New Hampshire

² Rachel Carson & Parker River NWRs, USFWS

³ Northeast Wetland Restoration
Tidal Marsh Impacts

Clean Water Act - served to reduce Dredge and Fill Impacts
Fails to protect from indirect impacts - reduced tidal exchange
Fails to reduce impacts from previous activities - diking and ditching
Tidal Marsh Ditching

• Salt hay production 1600-1900
• Mosquito control 1930s-Present
 • Unintended consequences
 • loss of fish (mosquito predators)
 • spoil piles - paths for *Phragmites* invasion
Ditching also leads to sediment oxidation and loss of elevation (Vincent et al. 2014) . . . translates to loss of resilience with sea level rise.
Effect of Ditching

Figure 3.1. LIDAR map of study site
A PAIR OF PARADOXES

• Salt marshes need salinity and sediments from tidal flooding – BUT increased flooding from SLR may be drowning them!

• Salt marshes need to drain so their roots maintain energy balance - BUT draining of the underlying peat results in oxidation & subsidence, increasing susceptibility to drowning as sea level rises.
Solution: Mend ditches from the bottom up

Design: project to mend half of ditches

Procedure:
1. Mow Grass
2. Roll into Ditch
3. Fix with Twine
Tried with great success in shallow ditches
Study Site: The Great Marsh, Parker River NWR
Monitoring: Elevation Profiles and Vegetation
Ditch Remediation Results - 36 months

Site 1 - T7

Elevation NAVD88 (m)

Distance (m)

Site 1 - T7

Ditch Remediation Results - 36 months
Change in Depth of Ditches 2014-2017

Ditch Center Elevation (NAVD88 m)

<table>
<thead>
<tr>
<th>Site</th>
<th>Treated</th>
<th>Untreated</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-0.20 -0.10 0.00 0.10 0.20 0.30 0.40 0.50
Natural Re-Vegetation of Tall Form *Spartina alterniflora*

Ditch Center Vegetation

S. alterniflora

- **Treated**
- **Untreated**

F ratio: 5.11
P value: 0.0001

Stem count (0.25m²)

- 2015
- 2016
- 2017

Percent Cover (%)

- 2015
- 2016
- 2017
Two Treated Ditches

2014 PRE

2015 YEAR 1

2016 YEAR 2
Mending Technique:
Ditches do shallow up: 5-50 cm in 2 yrs
Mean = 18.0 +/- 5 cm
Shallow ditches revegetate across their full widths with cordgrass

Will the high marsh between the ditches begin to store more peat?
Do ditches need to fill completely?
Thank You!

Acknowledgements: USFWS & staff at Parker River NWR, Rachel Carson NWR & Wertheim NWR; Town of Rowley; Town of Newbury; Students at JEL ... and many others