NAVIGATION DREDGING WITH INNOVATIVE PLACEMENT TO SUPPORT COASTAL RESILIENCE: AVALON, NJ THIN LAYER PLACEMENT PROJECT

Monica Chasten
Project Manager
Operations Division
U.S. Army Corps of Engineers
Philadelphia District

Patricia Doerr
Director of Coastal and Marine Programs
The Nature Conservancy
New Jersey Chapter
Organizational Perspective

USACE Philadelphia District Coastal Projects

- **Navigation Mission:** maintain federal channels in the Philadelphia District
- **Flood Risk Management:** strong beach nourishment program in NJ & DE and NJ Back Bay Study
- **Ecosystem Restoration**
- **Regulatory Mission**
A “PERSISTENT” APPROACH
Past, Present & Future

• **Navigation and Nature**: District took action to restore navigation after Sandy, but also looked for opportunities to assist with shoreline & ecosystem recovery and build coastal system resilience with *clean* dredged sediment

• **Technical Expertise**: Use *Regional Sediment Management (RSM)* and *Engineering with Nature (EWN)* concepts to develop short-term (post-Sandy) and long-term dredging strategies

• **Team Approach**: Actions were aided by support from USACE North Atlantic Division and other districts including Galveston, Mobile & Baltimore, ERDC, NJDEP and other partners

Progression from caution and risk aversion to being proactive and innovative
NJ Intracoastal Waterway Federal Channel Dredging and Placement:
Ring Island and Avalon NJ

Land Owned By New Jersey Division Of Fish & Wildlife (NJDFW)

Constructed With Emergency Supplemental Operation & Maintenance Funds

And

A National Fish And Wildlife Foundation Grant TO NJDFW, The Nature Conservancy And Green Trust Alliance

Contractor: Barnegat Bay Dredging Co.
NJWW Dredging & Avalon Thin Layer Placement

Constructed Dec 2014 to Feb 2016
NJWW Avalon Pilot Project:
Dredging “The Football Field” And Thin-layer Placement

- Small pilot accomplished in Dec 2014
- Larger project completed in Feb 2016
- Primarily fine-grained channel material, *sediment type and constructability are key factors!!*
- USACE funded dredging, NFWF grant funded placement design, construction oversight
- Monitoring to continue for several years, NFWF Grant Team & ERDC
Project Objective

Test methodologies that would enhance stressed salt marshes and help them persist into the future in the face of climate change and sea level rise.

- Success Criteria #1: Increase and then maintain an elevation that provides ideal tidal flooding and flushing for native salt marsh species.
- Success Criteria #2: More robust native salt marsh vegetation.
- Success Criteria #3: Return to baseline conditions for all other metrics unless they were expected to decline due to habitat conversion.
1. Phase 1 Project (Winter 2014-2015)
 • Small scale - testing of techniques
 • 5 acres
 • 5,000 CY

2. Phase 2 Project (Winter 2015-2016)
 • First “large-scale” project implemented
 • 35 acres
 • 49,300 CY
 • **Mix of sand, silt & clay**
 • **Average 8” of sediment**
Operational Lessons Learned

- Coordination is key
- Establish success criteria early
- Minimize containment
- Establish long-term funding for monitoring
- Include contingency funds for adaptive management
What’s the Timeline?

<table>
<thead>
<tr>
<th>Phase-Step</th>
<th>Time to Complete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1: Marsh Assessment and Placement Area Selection</td>
<td>1.5+ years</td>
<td></td>
</tr>
<tr>
<td>Phase 2: Project Design</td>
<td>6+ months</td>
<td>Design both placement areas & dredging design</td>
</tr>
<tr>
<td>Phase 3: Permitting</td>
<td>6 months</td>
<td>Varies</td>
</tr>
<tr>
<td>Phase 4: Bidding and Contracting</td>
<td>3-6 months</td>
<td></td>
</tr>
<tr>
<td>Phase 5: Construction</td>
<td>3+ months</td>
<td>Set-up, construction and clean-up</td>
</tr>
<tr>
<td>Phase 6: Adaptive Management</td>
<td>Continuous</td>
<td></td>
</tr>
<tr>
<td>Phase 7: Project Assessment</td>
<td>6 years</td>
<td>Minimum. 1 year baseline + 5 years post-construction</td>
</tr>
<tr>
<td>Total Estimated Time</td>
<td>8+ years</td>
<td>Depending on size of project</td>
</tr>
</tbody>
</table>
Post-Construction Monitoring Program

Formal Monitoring

- Vegetation**
- Elevation & Topography**
- Surface Water Levels
- Wildlife communities
 - Fish
 - Birds**
 - Macroinvertebrates
 - Benthic infauna**
- Sediment Testing
- Wave Energy & Flood Modeling
- Soil and Water Chemistry**

Monthly Site Inspections

- Started in April 2016
- Real-time observations to identify significant issues and guide adaptive management
- Observations of:
 - Vegetation recovery/die-off
 - Containment
 - Dredged material
 - Planted material
 - Wildlife
- Fixed photo points

Prioritized for future monitoring, plus site inspections every three months.
Preliminary Vegetative Regrowth

Vegetation cover has increased from 6% to 18% over the 3 years since placement.
General Observations

• No correlations between veg cover and placement depth*
• Regrowth seems to be fastest from the edge of the placement areas and from interior clumps
• *Salicornia* was the first to recolonize in some areas, then primarily *Spartina Alterniflora* in the following year.
• Recolonization of benthic infauna in the site within a year of placement.

*Preliminary results
Ecological Elevation Monitoring Results

- 2” or more below target
- Within 2” target
- 2” or more above target
- Pool
Cost Analysis

• Cost varied at each site:
 o $45/CY @ Avalon - $136/CY @ Fortescue
 o $56,000 - $405,000/acre

• Construction is largest cost category
 o 60% - 80% of project budget
Thank You!