Assessing Ecological and Physical Performance of Sustainable Shoreline Structures

Stuart Findlay, Jon Miller, Emilie Hauser, Amy Williams and Ona Ferguson - November 26, 2018
Hudson River Sustainable Shorelines Project

Promoting choices that preserve or enhance ecology and shoreline benefits while meeting engineering needs in a changing climate.

www.hrnerr.org/hudson-river-sustainable-shorelines/
Monitoring Protocol

• Culmination of > 10 years Shoreline Research and Outreach

• Indicators grounded in research findings

• Addresses key request from end-users – “Do these work?”

• Applied at sites in demonstration network

• Baseline for Change Assessment
Ecological and Structural Performance

- Physical – Stability of “built” structures
 Assess the physical forces on the site
- Ecological – Several variables known to be linked to ecological functions in the Hudson River.
Physical Forces

• GIS layers of Modelled currents/waves, ice observations [Desktop]
 o https://www.hrnerr.org/hudson-river-sustainable-shorelines/spatial-information-designing-shoreline

• Wave attenuation by sill if present

• Plaster casts for erosive forces
Physical Attributes (tied to Ecological Function)

- Substrate Composition
- Slope
Stability

- Asset Displacement –

- Key Elevations –

- Erosion -
ECOLOGICAL VARIABLES

• Wrack – Indicator, Organic Matter and Habitat

• Wood – Indicator, Habitat

• Vegetation – Indicator, Habitat and Structural element
Ecological and Structural Performance

- Physical – Stability of “built” structures
 Assess the physical forces on the site

- Ecological – Several variables known to be linked to ecological functions in the Hudson River.
SLOPE

R² = 55%
P < 0.01

Number of small fish vs. Shore zone width +1 (m)
HETEROGENEITY

\[R^2 = 25\% \]
\[P = 0.03 \]
Sustainable Shore Relative to Other Types

Slope (deg)

Nat Sand, Bedrock, Coxsack, Nat Rock, Bezack, Nut Hk, Foundry, Esop, Mead, RipRap

SS
Sustainable Shore Relative to Other Types

- Nat Sand
- Bezack
- Coxsack
- Nut HK
- Nat Rock
- Esop
- Mead
- Foundry
- Bedrock
- RipRap

Substrate Size (categorical)

- SS
Change over Time

- Just examples of approach. Only two years!
- Individual sites will have specific areas of concern
- For the network – what is useful scale?
 - Site means???
 - Break out by segments???
 - Suggestions???
Change in Particular Segments
Slope in front of eroding scarp

Foundry Dock
Mean Slope (deg)
0
2
4
6
8
10
12
14
16
2017 2018

Change in Particular Segments:
Slope in front of eroding scarp

2017 2018
SITE MEANS - Substrate composition – 2017 versus 2018

2018

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

1:1
Represents no change

Sand/Mud

Gravel/Cobble

2017

0 1 2 3 4

Substrate composition – 2017 versus 2018
Still To Do

• Link to other Shoreline Research/Assessment
• Long-Term Data Collection, Curation, Analysis (HRNERR role)
• New Sites monitored pre- & post-construction
• Continued and New Participant Training
This work is sponsored by the National Estuarine Research Reserve System Science Collaborative, which supports collaborative research that addresses coastal management problems important to the reserves. The Science Collaborative is funded by the National Oceanic & Atmospheric Administration & managed by the University of Michigan Water Center.

Past team members:
- Betsy Blair
- Nikitas Georgas
- Kristin Marcell
- Dan Miller
- Andrew Rella
- David Strayer

Sustainable Shorelines

Stuart Findlay
Jon Miller
Emilie Hauser
Amy Williams
Ona Ferguson

NEIWPCC

Department of Environmental Conservation
Hudson River Valley Greenway
Cary Institute of Ecosystem Studies

ESTUARY TRAINING COUNCIL

Hudson River Estuary Program

Estuary Science Collaborative

New York State Department of Environmental Conservation
Hudson River Estuary Program

CBI

National Estuarine Research Reserve System Science Collaborative