Louisiana Blue Carbon Science Highlights, Landscape-Scale Carbon & Additional Research Needs?

J.R. White, R.R. Twilley Dept of Oceanography & Coastal Sciences Louisiana SeaGrant Louisiana State University

Global Carbon Reservoirs [10¹⁴ kg]

 Atmospheric CO₂ 	7
• Biomass	4.8
 Fresh water 	2.5
 Marine 	5-8
 Soil organic matter 	30-50

Reddy and DeLaune, 2008

Will Any Soil Do?

Will Any Soil Do? No

- Upland soils typically range in 1-6% carbon
- Wetland peat soils range 30-40 % carbon
- Wetland peats on average have more than 10x more carbon stored

World's Coastal Deltas

Formed as sea level slowed ~ 7000 ybp

Exist as fresh water/fresh marsh expanses within the salty coastal zone

World's Coastal Deltas

Through coupled processes of subsidence and sea level rise, Deltas can play a substantial role in the global carbon cycle

R.R. Twilley

> 0.030 - <= 0.050

> 0.018 - <= 0.030

> 0.005 - <= 0.008

> 0.003 - <= 0.005

Not rated

Open water or major waterbodies

Carbon Density

0 5

20

30 40 Rd Kilometers H

Map Produced By: CLEAR (Coastal Louisiana Ecosystem Assessment and Restoration) A Coastal Ecosystem Forecasting System Representing a Multi-University and Agency Effort Housed at: Louisiana State University, Baton Rouge, LA

Map Date 05/25/07

Will Any Plant Do?

Horsfield nursery

Will Any Plant Do? No

Miami of Ohio

Wetland Area in Louisiana

Area of Coastal Marsh ~ 988,888 ha

Global Carbon Reservoirs [10¹⁴ kg]

Reddy and DeLaune, 2008

Blue Carbon

- Decomposition of organic matter is driven by oxygen availability
- Oxygen diffuses through water 10,000 times slower than in air
- Wet environments become anaerobic and the rate of decomposition is very slow

Land 1932

Land change 1932-2010

Land 1932

Land 2010

But Wait, there's more !

Combined Effects of Global Eustatic Sea Level Rise and Coastal Subsidence

Eustatic Sea Level Rise Rate = 2-3 mm y⁻¹ Mean Subsidence Rate = 9 mm y⁻¹

Greater C Sequestration with faster rising sea level (keeps the C wet)

Coastal wetlands can only accrete C as fast as sea level rises

From USGS Report by Barras et al. 2004

Peat Mining in Ireland – Release of Carbon Stores

Peat Mining in the Netherlands – Release of Carbon Stores

Annual Carbon Sequestration Assessment For Louisiana Coastal Marshes

Mean of 3 metric tons of C ha⁻¹ yr⁻¹

- Freshwater Tidal
- Brackish
- Salt Marsh

Area of Coastal Marsh ~ 988,888 ha

DeLaune, R.D. and J.R. White. 2012. Will coastal wetlands continue to sequester carbon in response to increase in global sea level? A case study of the rapidly subsiding Mississippi River deltaic plain. Climatic Change. 110:297-314

Annual sequestration coast wide: ~ 2,966,664 metric tons/yr

At \$15 per ton; \$44,499,960/yr

But Wait, there's more ?

Carbon Dioxide Emissions

Marsh Type	mg C m ⁻² d ⁻¹
Fresh marsh	900-4400
Brackish Marsh	245-4950
Salt Marsh	125-940

>10 measurements over year

DeLaune and White 2012

Methane Emissions

Marsh Type	mg C m ⁻² d ⁻¹
Fresh marsh	0 - 1950
Brackish Marsh	2 - 1035
Salt Marsh	1 - 37

>10 measurements over year

DeLaune and White 2012

Fresh Marsh

Brackish Marsh

Salt Marsh

Wetland Type

• Salt Marshes have Lowest Methane Emissions

- Trading a CO_2 sequestered with CO_2 released
- Louisiana has very large tracts of salt marsh
- Most of the losses of salt marsh are in Louisiana
 Perfect marsh type to target for restoration

35% of variance explained by type, location and season

Error

- Marsh Type
- Within Marsh Location
- Seasonality

Large Error Term

- Spatially not well described
 - Presence of vegetation
 - Flooding
- Temporally
 - Season
 - No data on fine scale (Over 24 hours)

More Work (measurements) needs to be done

Any More Credit in Subsiding Salt Marshes?

Peat Collapse

water

Low bulk density organic deposits with small amount of mineral sediment

Riverine sediment (high bulk density)

DeLaune and Nyman

Restoration in Context of C Credit

46,000 ha preserved by river re-introduction

2.07 Million US Dollars per year as a restoration benefit

Plus

Prevented loss of a meter of stored C Which has a value of 207 Million US Dollars

Conservation Projects

Uncertainty

Where does the Carbon go in Eroding Coastal wetlands?

- Carbon Credit Potential is greatest in Salt Marsh Systems
- Great temporal and spatial Uncertainty in gas flux rates
- Preservation of Coastal Marshes may provide superior credits due to the maintenance of the large stores of soil C and low methane flux

Land 2010

Projected land change 2012-2050 (moderate scenario)

Projected land 2050 (moderate scenario)

2.954

LSU Earth Scan Lab

51N

SON

2.91

Carbon Storage Capacity Over Time Using Wetland Vegetation Zone Maps & CRMS Data

R.R. Twilley

TIME

280

River Re-introduction

LSU Earth Scan Lab

5 I N

SON

2.91

Carbon Credits as a Mechanism to Fund Coastal Restoration ?

jrwhite@lsu.edu