

Challenges and Lessons Learned in Implementing Blue Carbon Projects

Sarah K. Mack, PhD, CFM Robert R. Lane, PhD

Tierra Resources

- Mission: To conserve, protect, and restore coastal wetland ecosystems by creating innovative solutions that support investment into blue carbon
- About Us: Founded in 2007. Recognized innovator and quality leader in the research, development, and monetization of blue carbon.
- Tierra International Foundation: 501(c)3 Founded in 2016

Webinar Overview

- Carbon Market Opportunities study
 - Eligible restoration techniques
 - Wetland restoration carbon modeling
 - Prevented wetland loss carbon modeling
 - Potential offset volumes
- The 5 biggest challenges
- Local project examples
 - Black mangrove air seeding
 - Luling wetland assimilation

Carbon Market Opportunities for Louisiana's Coastal Wetlands

Carbon Market Opportunities for Louisiana's Coastal Wetlands

- Evaluate commercial potential of blue carbon in LA
 - Identify scalable wetland carbon restoration methods
 - Carbon impacts of incorporating prevented wetland loss
 - Determine Louisiana's potential offset supply
 - Develop financial estimates of Louisiana's blue carbon
 - Identify information needs
 - Future scientific research
 - Wetland carbon offset programs

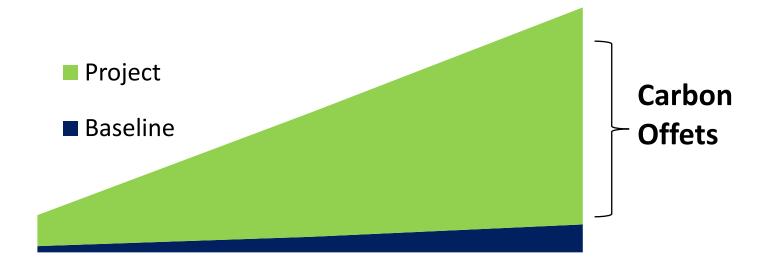
Restoration of Degraded Deltaic Wetlands of the Mississippi Delta

Sarah K. Mack, PhD, CFM Robert R. Lane, PhD John W. Day, PhD

2012

Wetland Carbon Restoration Techniques

- River Diversions
- Hydrologic Restoration
- Marsh Creation
- Wetland Assimilation
- Mangrove Plantings



Key Equation

Carbon Offset = Project Cseq – Baseline Cseq

Carbon Offset = $C_{ACR,t} = (\Delta C_{ACTUAL} - \Delta C_{BSL}) * (1-LK) * (1 - UNC)$

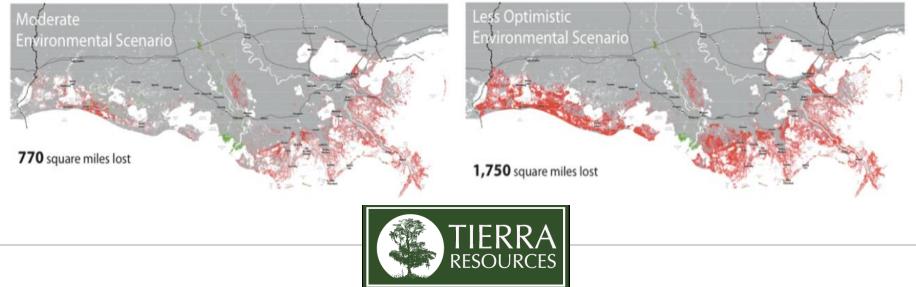
Carbon Offsets (mtCO₂e/ac/yr)

Developed a database of C seq rates from MRD wetlands Entirely from peer reviewed scientific literature

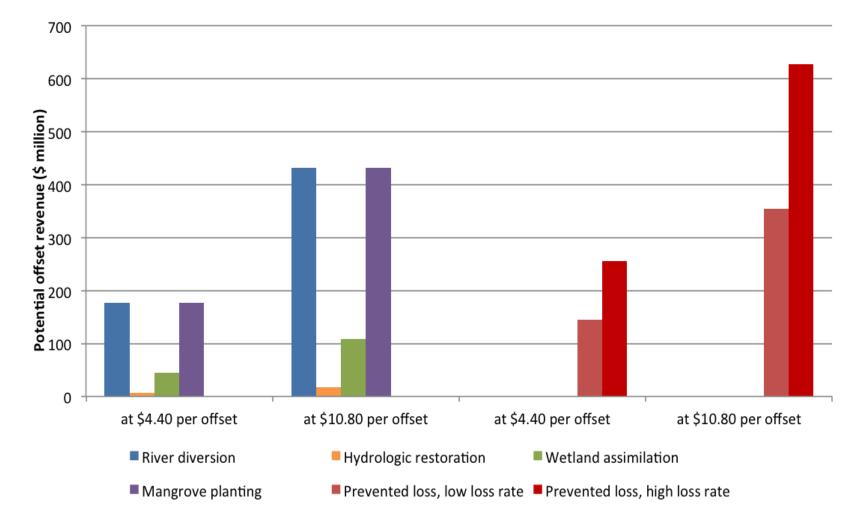
Restoration technique	Baseline C Seq.	Project C Seq.	Net Offset
Marsh creation	Data unavailable		
Hydro/diversion forested	4.7	8.5	3.8
Hydro/diversion emergent	3.2	4.0	0.8
Wetland assimilation forested	4.7	11.7	7.0
Wetland assimilation emergent	3.2	6.3	3.1
Mangrove planting	3.8	5.8	2.0

Potential Offset Volume

- Carbon sequestration rates were applied to the potential restoration acreage as determined by:
 - Louisiana's Coastal Master Plan for a Sustainable Coast
 - Potential project development analyses and mapping:
 - Mangrove planting
 - Wetland assimilation
- 20% buffer deduction was applied
 - Can range from 10% to > 50%
- 50 year project length:
 - Corresponds with Louisiana's Coastal Master Plan for a Sustainable Coast
 - *ACR requires a 40-year crediting period and 40-year project life

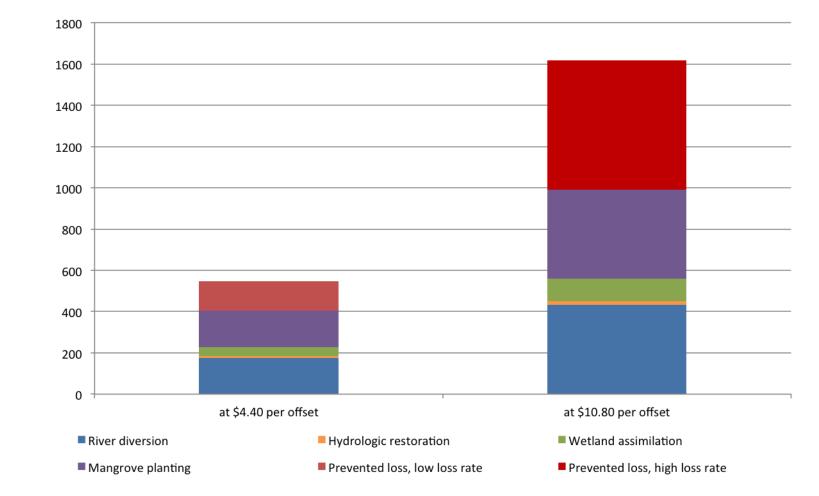


Prevented Wetland Loss Offset Volume


- Louisiana's Coastal Master Plan for a Sustainable Coast modeled a 'future without action" over a 50-year time frame
- Two scenarios:
 - 'moderate scenario' = low loss rate
 - 'less optimistic scenario' = high loss rate
- Top 50 cm of wetland soil horizon ~ 200 mtCO₂e/ac
- 25-75% of carbon in top 50 cm of sediment
- 20,000,000-100,000,000 mtCO₂e over 50 years

low loss rate

high loss rate



Restoration vs. Prevented Loss

Over 1.8 million offsets per year – almost 92 million offsets over 50 years! (20% buffer deduction)

Enhancement and Prevented Loss "Stackable"

Factors Influencing Funding

- Price of the carbon offset
- Inclusion of wetlands in California's compliance market
- Incorporating prevented wetland loss in carbon accounting
- The amount of wetlands that can be successfully restored for the project life
- Costs for developing a project
- Eligibility rules
 - Start date
 - Easement type
 - Use of federal funds
 - Buffer deductions

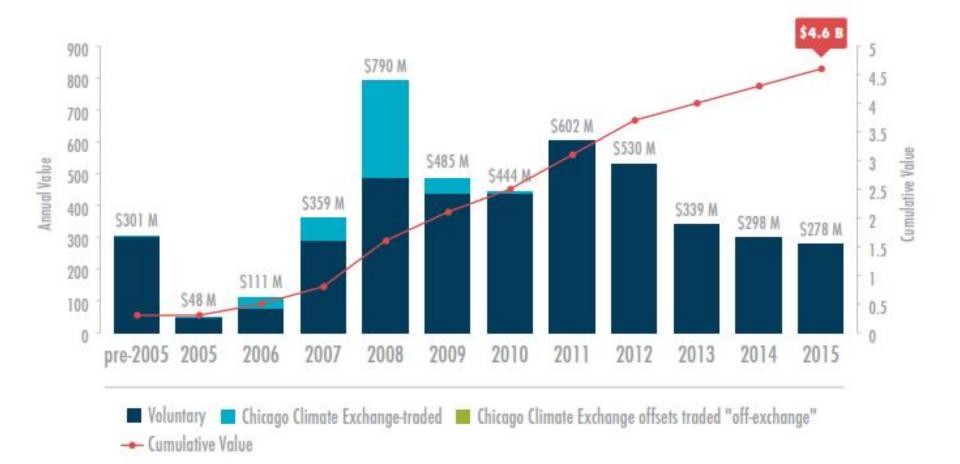
Challenge 1. Cost of Restoration

Cost of Restoration

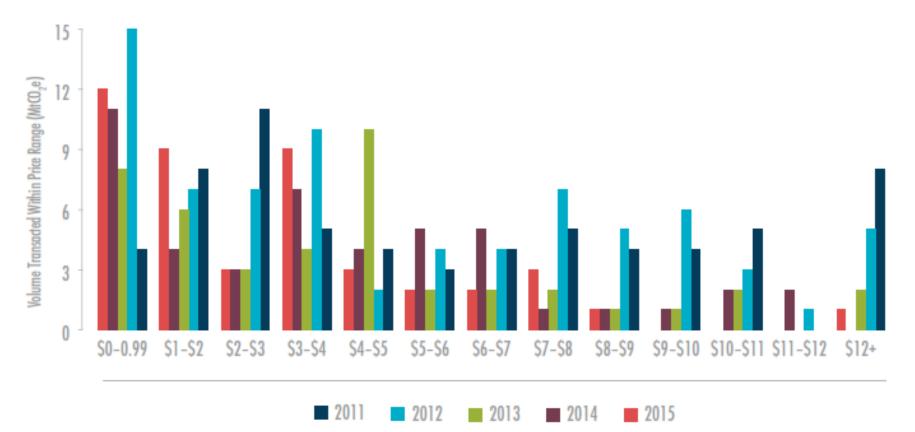
Restoration Technique	Restoration Cost / Acre	
River diversions	\$20,000/acre	
Hydrologic management	\$4,000/acre	
Marsh creation	\$156,000/acre	
Mangrove restoration in FL	\$70,000/acre	
Mangrove air seeding	\$3,000/acre	


Source: Coastal Master Plan, USACE, Tierra

Challenge 2. Market Dynamics



Overall Voluntary Market Growth of 10%


Source: Ecosystem Marketplace 2016

Lower Overall Market Value of \$278 M

Source: Ecosystem Marketplace 2016

All-Time Low of \$3.3/tonne

52% of all 2015 offsets transacted at less than \$3/tonne Supply greater than demand

Source: Ecosystem Marketplace 2016

California Compliance Market?

- Predicted shortage of supply
- Price of offset higher

– just-below allowance prices– currently \$12.7/tonne at auction

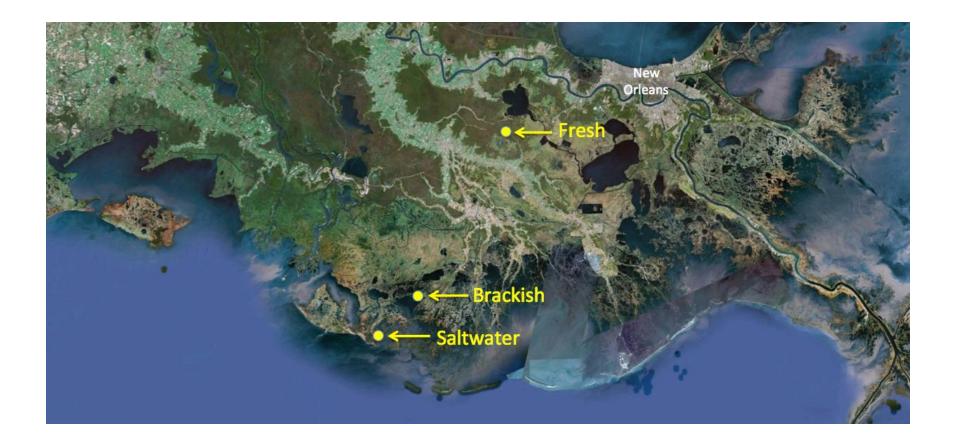
- Wetlands currently not included
- Need success in voluntary market
- California methodology in certification
- Double verification
- 100 year timeline

Don't take a long swim... on a super windy day in Barataria Bay just yet;-)

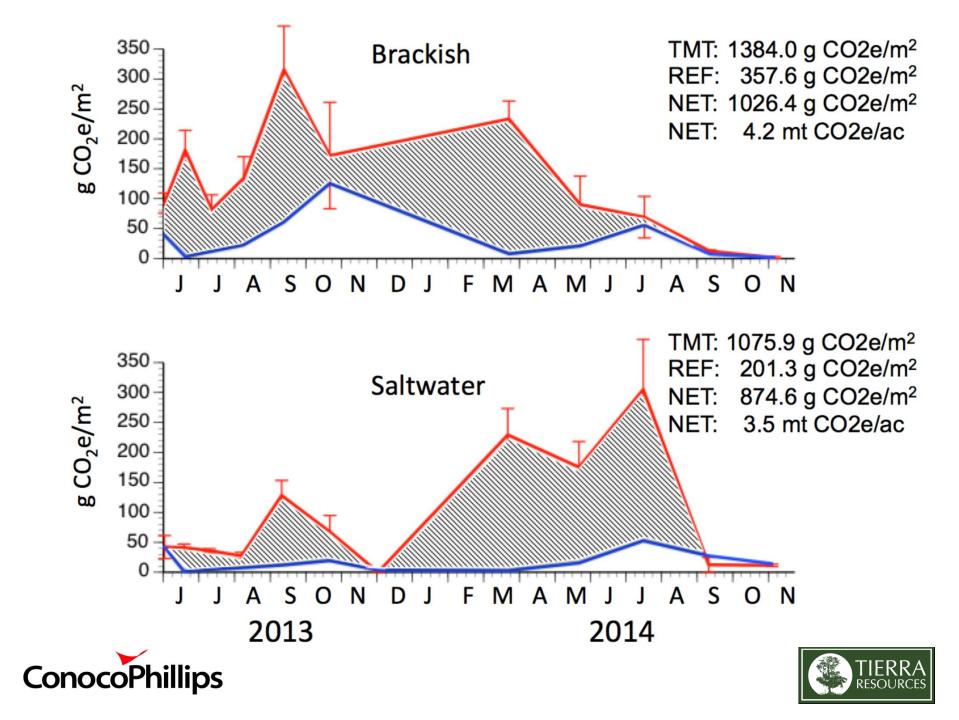
We still have Paris!

- Countries push to commit beyond 2° C
 - -100 countries collectively aim for 1.5° C
 - -128 subnational jurisdictions also commit
- Sustainable Development Goals referenced — Protecting the environment
- Private sector more present than ever!
- 1000 companies call for a price on carbon —Set "Science-Based Targets"

-Seek to "inset" their supply chain



Challenge 3. Optimizing Offsets



Prevented Wetland Loss Research

Challenge 4. Reduce Project Development Costs and Simplify Monitoring, Reporting, and Verification

GHG Emissions

- Measuring GHG's may be cost prohibitive
 - High variability
 - Costs of towers or operating chambers
- Restoration has no net increase in GHG's
- Further research to justify exclusion of GHG emissions especially methane.
- Holm et al. 2016 used eddy covariance to prove net sink in freshwater wetlands.
- Wetland net sinks over longer time periods.
 - Poffenbarger et al. 2011
 - Whiting and Chanton 2001
 - Mitsch et al. 2013
- Develop regional GHG emission factors

Technical Recommendations

- Modify Louisiana's Coastal Reference Monitoring System (CRMS) program to include carbon offset monitoring parameters
- Develop wetland carbon and GHG emission models
- Database for wetland management info
- Aggregation or grouping of projects to decrease project development costs

Challenge 5. Policy

Policy Strategy

- Costs of restoration exceed carbon revenues.
- Carbon finance to be leveraged with traditional restoration programs.
- New public-private paradigms must be developed
 - Government program?
 - Partnership to match other types of funding
 - Long-term monitoring and maintenance
 - Local cost share
 - Expand a project such as with plantings
- What about additionality?

Policy Recommendations

Advocate with carbon standards

- Use of federal funds,
- Environmental credit stacking,
- Eligible types of conservation easements,
- Crediting period length for wetland restoration.

Publish lessons learned from existing pilots

- Analyses of costs and benefits
- Examples of public-private paradigms

Pilot: Insight Into Ecological Conditions

- Nested one-acre sites to determine optimal ecological conditions
- 10 planted seedling and broadcast propagule sites 2012 & 2014
- 5 aerial dispersal sites 2012 & 2013

Mangrove Air Seeding Successful!

- 1st globally to successfully use crop duster airplanes
- A fraction of the cost of conventional restoration
- Mangrove roots prevent erosion and reduce hurricane surge

Determining Scalability

- LiDAR remote sensing = 5cm resolution
- Developed equation for optimal mangrove establishment
- Further incorporated:
 - Eustatic sea level rise
 - Localized subsidence
 - Localized accretion from pilot sites
- Could not incorporate:
 - Edge erosion
 - Increased rates of sea level rise

Window of Opportunity

Dularge/Terrebonne West = 31-59 years Dularge/Terrebonne East = 21-31 years Leeville Port Fourchon = 14-21 years

Dularge/Terrebonne West

> Dularge/Terrebonne East

DOES NOT INCLUDE EDGE EROSION OR INCREASED RATE OF SEA LEVEL RISE!

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2012 DigitalGlobe

eeville Port Fourchon

Billions of Assets at Risk

- \$499 billion in oil & gas assets vulnerable in Gulf Coast
- \$23.4 billion annual losses in Louisiana by year 2050 with no coastal restoration
- Port Fourchon national impacts 3 weeks of no service —\$11.2 billion sales,
 - -\$3.1 billion household earnings,
 - -65,000 jobs nationally
 - -95% tonnage oil and gas related
- Land base of Louisiana Offshore Oil Port (LOOP)
 - Pipeline to 50% of U.S. refining capability

Source: Building a Resilient Energy Gulf Coast (2010);CWPRA (2012); GLPC (2014)

Scaling to 30,000 Acres in 10 years!

- Developed a proprietary seeding tool
- 40,000 acres ideal conditions today
- 30,000 acres is realistic
- Need to prioritize Port Fourchon region
 - Least sustainable wetlands
 - Most vulnerable infrastructure
 - Largest economic impacts
- Start scaling the technology fall 2016

Carbon Market Challenges

- Proving scalability
- Reducing costs
 - \$3,000 acre
 - Can't fund entirely with carbon
- 40-100 year timeline?
- Quantifying co-benefits
- Strategic partnerships
- New public-private paradigms

Going Big or Losing Home


- Bigger, faster impact
- Most cost-efficient
- Increase community resilience
- Protect critical infrastructure
- Youth outreach mentorship program

Luling Wetland Carbon Pilot!

Moving Forward

- Creating a win-win transaction!
- Justify omitting GHG's
 - Holm et al. 2016
- Addressing additionality
- Long-term commitments?
- Stack nutrient credits
- Prove the concept
- Peer-reviewed article in 2016

Final Conclusions

- Recent developments show growing recognition of wetlands' role in climate change mitigation.
- There is significant offset supply in Louisiana.
- Louisiana is at the forefront of blue carbon initiatives globally.
- Open to collaboration to implement projects.
- Provide input into research activities.
- rlane@lsu.edu
- sarahmack@tierraresourcesllc.com

Investing in Our Livelihood!

Acknowledgements

ConocoPhillips

- Dr. Maxine Madison
- Phil Precht
- Ordis "Buddy" Smith
- Jennifer Barringer
- Khalid Soofi
- Gina Fanguy

Entergy Corporation

- Steve Tullos
- Chuck Barlow

Tierra Resources Team

- Dr. Sarah Mack
- Dr. Robert Lane
- Dr. John Day
- Robin Lewis
- Dick Kempka
- Dr. Ron DeLaune
- Mik Mckee

