Blue Carbon

Mitigating CO₂ Emissions through Coastal and Estuarine Ecosystem Conservation & Restoration

Stephen Crooks Ph.D.

Silvestrum Climate Associates

Baton Rouge June 28^h, 2016

Sustainable Management

silvestrum

CLIMATE ASSOCIATES

Goal of Ecosystem Management (Adaptation)

Goal of Carbon Management

Source: Forest Trends

silvestrum CLIMATE ASSOCIATES Paris Agreement on Climate

- Signed by 195 nations. If fully implemented the Paris Agreement on Climate could signal the beginning of the end of the fossil fuel era. Challenges faced.
- Goals are to hold global temperatures below 2°C relative to pre-levels with an ambitious target of 1.5°C.
- Sea-level will continue to gradually rise under these warming scenarios though the potential of catastrophic change are reduced.
- Elements:
 - Financing and technical support to developing countries
 - Inclusion of forests and soils
 - Country commitments to action.

Connecting the dots on blue carbon ecosystems...

Components of an integrated multiuse landscape
 Sustainable livelihoods and economies
 Climate mitigation and adaptation
 Natural Infrastructure and flood risk reduction
 Ameliorating local ocean acidification

Qwuloolt Wetland Restoration Project

Developing the Learning Curve

- 1. Recognize value of wetland management
- 2. Establish examples of good practice
- 3. Achieve multi-use functional landscape
- 4. Adaptation to climate change
- 5. Incorporate GHG fluxes and storage

Blue Carbon Interventions:

Policy adjustment Management actions Carbon finance projects

Available at Silvestrum.com

Stephen Crooks and Michelle Orr, ESA PWA Igino Emmer and Moritz von Unger, Silvestrum Ben Brown, Mangrove Action Project Daniel Murdiyarso, CIFOR

Blue Carbon: The Game Plan

United Nations Framework Convention on Climate Change

- Brief national climate change negotiators
- Identify policy opportunities
- Engage IPCC and SBSTA
- Multi-national demonstration projects

National Governments

- Establish programs and science research
- Recognize wetlands in national accounting
- Agency awareness, action, funding
- Local Demonstration and Activities
 - Landscape level accounting
 - Establish carbon market opportunities
 - Look for synergistic conservation benefits
 - Demonstration projects and public awareness

Coastal (blue carbon) ecosystems in focus for climate change mitigation

Forest

Peatland

Mangroves

Tidal Marshes

Seagrass

Coastal Ecosystems: Long-Term Carbon Sequestration and Storage

The state of blue carbon science: a short review of achievements and gaps

PLOS ONE

Estimating Global "Blue Carbon" Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems

Linwood Pendleton^{1®}, Daniel C. Donato²*[®], Brian C. Murray¹, Stephen Crooks³, W. Aaron Jenkins¹, Samantha Sifleet⁴, Christopher Craft⁵, James W. Fourqurean⁶, J. Boone Kauffman⁷, Núria Marbà⁸, Patrick Megonigal[®], Emily Pidgeon¹⁰, Dorothee Herr¹¹, David Gordon¹, Alexis Baldera¹²

	Inputs			Results	
Ecosystem	Global extent (Mha)	Current conversion rate (% yr ⁻¹)	Near-surface carbon susceptible (top meter sediment+biomass, Mg CO ₂ ha ⁻¹)	Carbon emissions (Pg CO ₂ yr ⁻¹)	Economic cost (Billion US\$ yr ⁻¹)
Tidal Marsh	2.2-40 (5.1)	1.0-2.0 (1.5)	237-949 (593)	0.02-0.24 (0.06)	0.64-9.7 (2.6)
Mangroves	13.8-15.2 (14.5)	0.7-3.0 (1.9)	373-1492 (933)	0.09-0.45 (0.24)	3.6-18.5 (9.8)
Seagrass	17.7-60 (30)	0.4-2.6 (1.5)	131-522 (326)	0.05-0.33 (0.15)	1.9-13.7 (6.1)
Total	33.7-115.2 (48.9)			0.15-1.02 (0.45)	6.1-41.9 (18.5)
		Composed	o notional		
		Compare to national			apan

Table 1. Estimates of carbon released by land-use change in coastal ecosystems globally and associated economic impact.

Tidal Wetland Net GHG Removal Potential

Wetland Type	Carbon Sequestration Potential (tons CO ₂ e/acre/year)	Methane Production Potential (tons CO ₂ e/acre/year)	Net balance
Salt Marsh (salinity >18ppt)	High (0.74 – 3.71)	Low (< 0.2)	High C sequestration
Mangrove	High (0.74 – 3.71)	Low – High	Depends on salinity
Brackish Tidal Marsh (salinity <20 ppt)	High (0.74 – 6.68)	High (0.51 – 10.12)	Approx net balance ^[1]
Subsidence Reversal (managed FWTM)	Very High (8 - 25)	Very High (5 - 12)	Potential very high C sequestration[2]
Freshwater Tidal Marsh	Very High (2.02+)	Very high	Approx net balance
Estuarine Forest	High (1.49 – 3.71)	Low (< 1.01)	High C sequestration

Crooks et al, 2009 Tidal Wetlands Offset Issues Paper.

^{1]} Too few studies to draw firm conclusions. CH₄ emissions brackish wetlands may negate carbon sequestration within soils. Further research required.

 $^{\mbox{\tiny [2]}}$ Too few studies to draw firm conclusions. $\rm CH_4\, emissions$ from

Methodological Guidance for Coastal Wetlands in the 2013 SUPPLEMENT TO THE 2006 IPCC GUIDELINES FOR NATIONAL GREENHOUSE GAS INVENTORIES: WETLANDS

2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands

- 1. Introduction
- 2. Drained Inland Organic Soils
- 3. Rewetted Organic Soils
- 4. Coastal Wetlands
- 5. Inland Wetland Mineral Soils
- 6. Constructed Wetlands for Wastewater Treatment
- 7. Cross-cutting Issues and Reporting

Adopted by IPCC Oct 2013, Published Feb 2014 http://www.ipcc-nggip.iges.or.jp/

Task Force on National Gerenhouse Gas Inventories

U.S. Coastal Wetlands: Potential Emissions and Removal

- Drainage and excavation
- Human induced subsidence of wetlands (erosion)
 •(e.g. Mississippi Delta)
- Methane emissions from tidally disconnected /impounded waters
- Forestry Activities on Coastal Wetlands.
- Restoration of coastal wetlands and seagrasses
- Aquaculture (operations)

"Blue" Carbon Monitoring System

Linking soil and satellite data to reduce uncertainty in coastal wetland carbon burial: a policy-relevant, cross-disciplinary, national-scale approach

Lisamarie Windham-Myers (18 Science Pls; October 2014-17) Federal Non Federal USGS Brian Bergamaschi U. South Carolina Jim Morris U. Maryland/NOAA Ariana Sutton-Grier Kristin Byrd U. San Francisco Judith Drexler John Callaway Kevin Kroeger Florida Intl. U. **Tiffany Troxler** John Takekawa Texas A&M U. **Rusty Feagin** Isa Woo Independent **Stephen Crooks** Postdoc: Meagan Gonneea 1000 NOAA-NERR Matt Ferner 2013 Supplement to the 2006 IPCC Guidelines for Smithsonian Pat Megonigal National Greenhouse Gas Inventories: Wetlands Don Weller d Drained Soils, and Construct Lisa Schile **Postdoc:James Holmquist**

NASA-JPL

Marc Simard

"Blue" CMS – Product Goals

1. IPCC Tier 2: <u>National Scale stock-based</u> 30m resolution C flux maps (1996-2010) via NOAA's C-CAP (with NWI) linked with regional SLR and SSURGO 0-1m soil data

2. IPCC Tier 3: Sentinel Site stock-based and process-based maps, with supporting Field and remote sensing data availability Within-site range of tidal wetland categories Salinity, Elevation Vegetation types Landuse (degradation, restoration) Between-site range of climate variables

3. Price of Precision Error Analysis (30m v 250m, Tier 1,2,3, Algorithms)

Key Methodology Development Issues

Real	Demonstrate that reductions have actually occurred
Additional	Ensure reductions result from activities that would not happen in the absence of a GHG market
Permanent	Mitigate risk of reversals Verify reductions ex-post
Verified	Provide for independent verification that emission reports are free of material misstatements
Owned unambiguously	Ownership of GHG reductions must be clear
Not harmful	Avoid negative externalities
Practicality	Minimize project implementation barriers

Lessons from Conservation and Restoration Planning

- 1. Have a clear and coherent planning approach
- 2. Plan conservation and restoration in the wider landscape context
- 3. Prioritize sites (not all are suitable)
- 4. Restore physical processes and ecosystem dynamics
- 5. Recognize the value of project design and engineering
- 6. Understand the restoration trajectory and ecological thresholds
- 7. Conserve and restore ecosystems sooner rather than later
- 8. Restoration of historic conditions is not always possible
- 9. Avoid transplantation of non-indigenous species
- 10. Be patient

- 1. Assume ownership of the project
- 2. Choose and demarcate the site(s) carefully
- 3. Choose the project standard and project delivery cycle
- 4. Access the market early
- 5. Link the project to other finance options
- 6. Check the costs and prepare for economies of scale

Lessons from community engagement

- 1. Invest in pre-project community capacity building
 - E.g. Field schools
- 2. Build capacity within government
 - National support
 - Subnational support
- 3. Meet in the middle
 - Train exensionists,
 - stakeholder communication
- 4. Establish livelihoods programs

Steps in Blue Carbon Project Planning

- 1. Define project concept and perform preliminary feasibility assessment.
- 2. Define target market and select a carbon standard
- 3. Establish effective community engagement
- 4. Design project activities
- 5. Assess permanence risk and develop mitigation strategy
- 6. Secure project development finance and structure agreements
- 7. Provide for legal due diligence and assess carbon rights
- 8. Provide for social and environmental impacts assessment
- 9. Maintain ongoing liaison with regulators.
- 10. Share and publish experience build the learning curve

Example Project Activities

Conservation

- Protection of at risk wetlands
- Improved water management on drained wetlands
- Sediment recharge to coastal wetlands
- Space for migrating wetlands

<u>Restoration / creation</u>

- Lowering of water levels on impounded wetlands
- Raising soil surfaces with dredged material
- Increasing sediment supply by removing dams
- Restoring salinity conditions
- Improving water quality
- Revegetation
- Combinations of the above

53

VALLEY

Subtidal / River
 Intertidal
 Low saltmarsh
 High saltmarsh

Alder carr / Wetland Raised bog

owland forest / Upland

ANCHOLME VALLEY

OUSE VALLEY

Historic

The Humber Estuary

405 km of levees 870 km² of drained wetlands

Loss of biomes and carbon stocks.

Ongoing emissions

200,000 acres lost

SOURCE: DWR 2007 LIDAR; ESA-PWA 2012 Bay Delta Science Conference. Figure 1 Elevations and ROAs of Delta-Suisun Marsh Planning Area

Emissions from One Drained Wetland: Sacramento-San Joaquin Delta

Area under agriculture 180,000 ha

Rate of subsidence (in) 1 inch

2-3 million tCO_2/yr released from Delta

1 GtCO₂ release in c.150 years 4000 years of carbon emitted Equiv. carbon held in 25% of California's forests

Accommodation space: 3 billion m³

Baseline emissions

Factor in Sea Level Rise into Project

Deposition

7

Erosion

ESA PWA Resilience to Sea Level Rise

Modeled with Marsh98

COASTAL BLUE CARBON OPPORTUNITY ASSESSMENT FOR THE SNOHOMISH ESTUARY THE CLIMATE BENEFITS OF ESTUARY RESTORATION

- 4749 ha of drained wetlands
- 29% of wetland loss in Puget Sound
- 1353 ha of restoration planned.

Figure 8 Historic habitats of the Lower Snohomish Estuary based on River History Project (Geomorphological Research Group, Quaternary Research Center, 2005) and Haas and Collins (2001) and 2013 soil core and vegetation plot locations.

Snohomish Planning for Sea Level Rise

- Define future high water
 - 1 m
 - Location of future habitat/
 - Areas of future flood risk
- Basis for discussion
 - How to adapt to SLR
 - Land use decisions
 - Farming
 - Development
 - Conservation
 - Carbon management

Figure 6 Study Area (dashed black line) and 2013 field sampling sites (red star).

Field and Laboratory Analysis

Soil carbon stock quantification:

- 3 Natural sites
- 5 Restoring sites
- 4 Restoration potential sites

Accretion rates:

- 5 sites

ESA PWA Restoration and carbon sequestration potential

Figure 18 Hypsometric analysis of entire project area (ha).

ESA	PWA

		Sediment	Carbon	Mineral
		accretion rate	accumulation rate	accumulation rate
Site	Site Name	(cm yr ⁻¹)	(g C m ⁻² yr ⁻¹)	(g m ⁻² yr ⁻¹)
QM	Quilceda Marsh	0.43	110.2	2134
HP	Heron Point	0.18	58.0	484
OI	Otter Island	0.58	173.1	2543
NE	North Ebey	1.61	352.1	7585
SP	Spencer Island	0.35	91.4	2148

Table 11. Rates of sediment accretion, carbon accumulation, and mineral accumulation for five sites. Accretion rates were determined from the distribution of excess ²¹⁰Pb activity with depth using one core from each site. Carbon and mineral accumulation rates were calculated from the accretion rates

Figure 19 Existing and approximate targeted restoration elevations by site as of 2013. Units are in meters (m), NAVD88.

Great Bulrush stems, roots and new shoots in autumn

Young stamens x10; each c. 2 mm long

1

awn

Fertile scale x15; dorsal side

Cross-section of rhizome 7 mm thick with roots and new white shoot 5 cm tall

Lower stem 12 mm wide with leaf blade shorter than sheath

Inflorescence with green rays, peduncles and brown spikelets c. 8 mm long with exserted styles

Key Results – Existing Projects

- *Planned* restoration of 1,353 ha would yield 1,176,000 tons CO₂ sequestration at current sea level
- 2. Planned restoration would yield additional 1,377,000 tons CO_2 sequestration to future sea level
- 3. Total CO₂ sequestration of 2,553,000 tons
- 4. This is equivalent to the emissions from 500,000 cars in one year, or 5,000 cars/year for 100 years

ESA PWA Snohomish Estuary Opportunities and Constraints

Opportunities

- High restoration potential (topo, sediment, vegetation)
- Whole landscale restoration opportunities
- High resilient to sea level rise (veg, floodplain, sediment)
- Grouping project instances under single large project.
- Community aware (local, state, federal)
- Regional replication

Constraints

Quantification of methane in baseline and project.

Concluding thoughts

- Base carbon projects on good practice for restoration and conservation
- Embed mitigation planning in a climate adaptation context
- Look to account across whole landscape to improve system wide resilience.
- Account for all greenhouse gases
- Include coastal forest and seasonal floodplains in GHG management
- Areas with high sediment availability will be the most resilient to sea level rise
- Methane reductions by reconnecting impaired drainage areas offer zero permanence risk.

Steve Crooks 415 272 3916 Steve.crooks@silvestrum.com

Extent of Coastal Lands

Coastal Land Cover (Ha)

]		California			Conterminous US	
COASTAL LAND COVER BY CATEGORY -	ALL SOILS					
CCAP Class	Total Area	Organic Soil	Mineral Soil	Total Area	Organic Soil	Mineral Soil
High Intensity Developed	2,573	66	2,507	16,470	3,727	12,742
Medium Intensity Developed	8,281	316	7,965	36,306	7,935	28,371
Low Intensity Developed	6,761	568	6,193	73,550	21,530	52,019
Developed Open Space	2,579	271	2,308	24,979	4,475	20,504
Cultivated	101,433	50,269	51,164	205,335	90,776	114,559
Pasture/Hay	15,469	8,072	7,397	61,802	23,791	38,011
Grassland	25,948	11,142	14,807	47,405	14,119	33,286
Deciduous Forest	27	-	27	5,939	766	5,173
Evergreen Forest	227	18	208	34,965	3,998	30,967
Mixed Forest	63	4	59	4,497	594	3,902
Scrub/Shrub	656	80	576	18,504	3,379	15,124
Palustrine Forested Wetland	703	195	508	873,340	563,487	309,853
Palustrine Scrub/Shrub Wetland	2,190	652	1,538	134,371	64,914	69,457
Palustrine Emergent Wetland	12,589	2,491	10,098	599,595	356,053	243,543
Estuarine Forested Wetland	130	5	124	197,728	50,891	146,837
Estuarine Scrub/Shrub Wetland	2,535	462	2,073	99,800	15,018	84,782
Estuarine Emergent Wetland	42,246	13,815	28,431	1,891,096	998,315	892,781
Unconsolidated Shore	4,710	94	4,615	344,502	13,439	331,063
Bare Land	1,541	161	1,380	40,337	5,040	35,297
Palustrine Aquatic Bed	-	-	-	19,440	8,894	10,546
Estuarine Aquatic Bed	7,228	-	7,228	180,106	15,431	164,675
Total	237,888	88,681	149,207	4,910,066	2,266,572	2,643,494

			California	
	COASTAL LAND COVER BY CATEGORY			
SIIVESTRUM CLIMATE ASSOCIATES	CCAP Class	Total Area	Organic Soil	Mineral Soil
	High Intensity Developed	2,573	66	2,507
	Medium Intensity Developed	8,281	316	7,965
	Low Intensity Developed	6,761	568	6,193
	Developed Open Space	2,579	271	2,308
	Cultivated	101,433	50,269	51,164
	Pasture/Hay	15,469	8,072	7,397
	Grassland	25,948	11,142	14,807
	Deciduous Forest	27	_	27
	Evergreen Forest	227	18	208
	Mixed Forest	63	4	59
	Scrub/Shrub	656	80	576
	Palustrine Forested Wetland	703	195	508
	Palustrine Scrub/Shrub Wetland	2,190	652	1,538
	Palustrine Emergent Wetland	12,589	2,491	10,098
	Estuarine Forested Wetland	130	5	124
	Estuarine Scrub/Shrub Wetland	2,535	462	2,073
	Estuarine Emergent Wetland	42,246	13,815	28,431
	Unconsolidated Shore	4,710	94	4,615
	Bare Land	1,541	161	1,380
	Palustrine Aquatic Bed	-	-	-
s not include	Estuarine Aquatic Bed	7,228	-	7,228
nd transition				
5	Total	237,888	88,681	149,207
			-	

Does not include upland transition areas

Emission / removals from California's coastal lands

Ecosystem	Area (Ha)	Emission tC / Ha/ yr	Total tC / yr	Total tCO2 / yr
Impaired Drainage	10,000	1.11	11,100	40,703
Salt marsh restoration	40,000	-0.91	-36,400	-133,479
Drained organic soil	69,483	7.9	584,916	2,146,641
seagrass	?	-0.43	?	?
Natural saltmarsh	42,246	-0.91	-38,444	-140.974

Notes:Negative value reflects sequestration.Emissions factors derived from IPCC default values