

An Introduction to Coastal Blue Carbon Concepts

Stefanie Simpson, Baton Rouge, LA June 2016

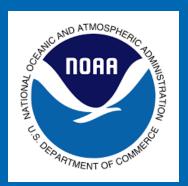
Who we are

www.estuaries.org

National Summit

December 10 – 15, 2016 Hilton Riverside in New Orleans, LA

Registration is now open!


www.estuaries.org/summit

Gratitude

What Is Blue Carbon?

"Blue Carbon"

the greenhouse gases (GHGs) stored in, sequestered by, and released from coastal marine ecosystems such as seagrasses, mangroves, salt marsh, forested tidal wetlands, and other tidal wetlands.

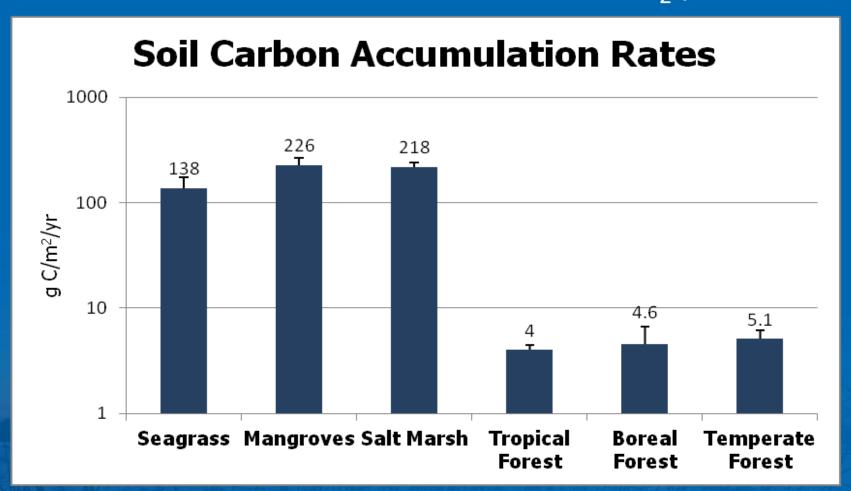
Goal: Increase public and private investment in coastal habitat restoration and conservation.

Why Blue Carbon

Blue Carbon at the Nexus

Restoration / Conservation

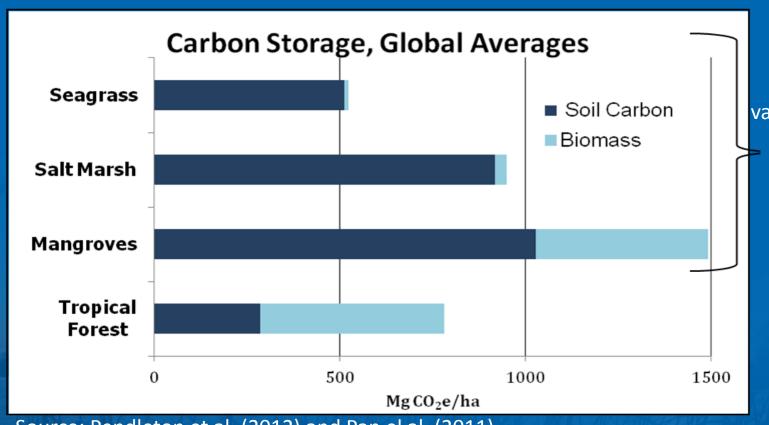
Coastal Blue Carbon


Mitigation/
Ocean Acidification

Adaptation

Carbon Sequestration

Wetlands can remove >10 times more CO₂ per hectare



Source: Mcleod et al. (2011)

Carbon Storage

Primary carbon storage in soils, where it can remain for centuries

Soil carbon
values for 1st meter
of depth only
(total depth =
several meters)

Source: Pendleton et al. (2012) and Pan el al, (2011)

Carbon loss

- Global habitat loss 0.7-7% per year
- Half a billion tons CO₂ released annually (equivalent to Canada's yearly emissions)

Why Blue Carbon

Tidal Wetland Restoration Progress

- Minimum 1.5 million acres of tidal wetland losses among 28 NEPs – a low estimate
- Combined goals of NEPs to restore ~650,000 acres
- 4 year average reported restoration is ~7,000 acres
 - barely 1% of the goal
- Average coastal wetland losses of 80,000 acres/year

RAE Blue Carbon Strategy

Introduction into Carbon Markets

VCS Requirements
Restoration Methodology
Conservation Methodology
Demonstration projects

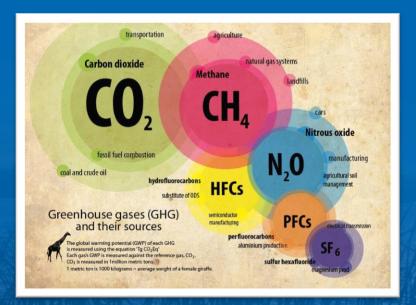
Explore Policy and Regulatory Options
National Accounting, e.g.

Support Science

Tampa Bay and Snohomish Assessments Bringing Wetlands to Market project

<u>Coordinate</u> Blue Carbon Initiatives

National and Regional Working Groups

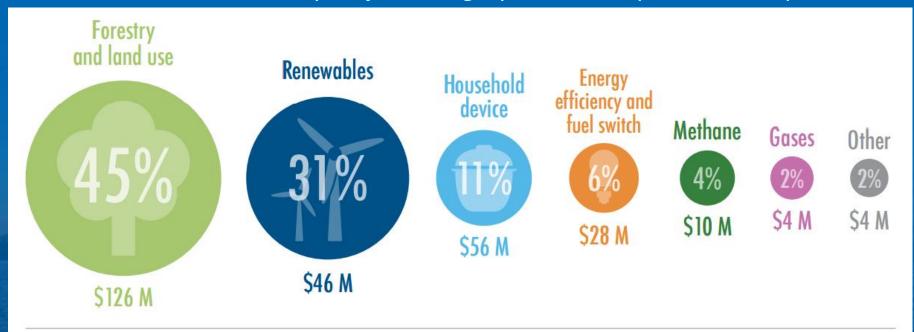

Raise <u>Awareness</u> and Build <u>Capacity</u>

Carbon Markets

- CO₂ and other GHGs are global pollutants
- GHGs measured in discrete units tons of CO₂eq
- All GHGs = CH₄ GWP of 21 to 34, N₂O GWP of 310
- Market defines = all payments for third-party emissions reductions, called "offsets"
- Either regulatory ("compliance") or voluntary

Voluntary Carbon Market

- Standards for offset quality and integrity
 - General requirements and guidance on GHG accounting
 - Procedures for validation and verification


- Registries ensure credits are tracked, retired, prevent double-counting
- Methodologies provide step-by-step requirements for estimating and monitoring emissions following accepted, scientific good practice

Voluntary Carbon Market

- \$78 million in N. America-2013
- Anticipated growth of 300% by 2020
- 45% of offsets are from forestry/land use
- Verified Carbon Standard largest issuer, 47%

Market Share and Value by Project Category, 2013. Ecosystem Marketplace.

Bubble size: Volume

Percentage: Market share

\$: Market value

Are Wetland GHG Offsets Attractive?

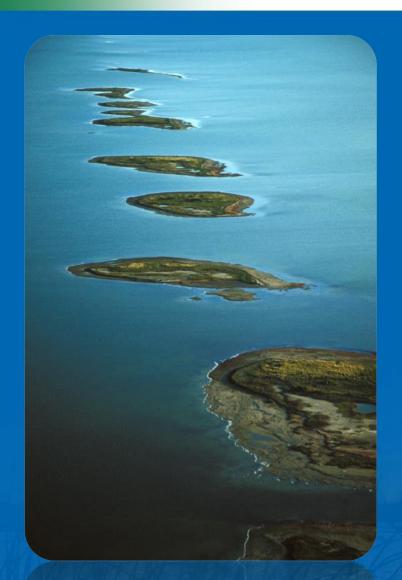
- Tidal wetland and seagrass restoration creates "co-benefits"
- Climate mitigation and corporate social responsibility are primary reasons to buy
- AFOLU offsets sell at a premium
- Wetlands offsets could be highly charismatic in the marketplace

"We like projects that have co-benefits and side benefits in addition to just pure GHG benefits... and we're really drawn to reforestation projects in particular that have watershed protection, habitat rehabilitation as well as a GHG component." – Bob Antonoplis, Assistant General Counsel for The Walt Disney Company

Wetland Methodologies

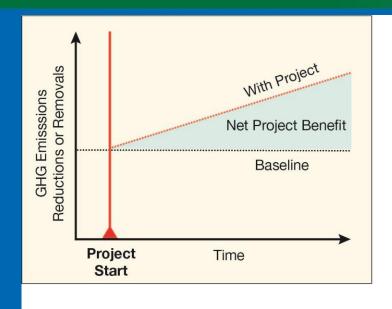
- Coastal Wetland Creation (VCS) LA CPRA
- Restoration of Degraded Wetlands of the MS Delta (ACR) – Tierra Resources
- Global Tidal Wetland and Seagrass Restoration Methodology (VCS) –
 RAE
- Global Tidal Wetland and Seagrass
 Conservation Methodology –
 initiated by RAE

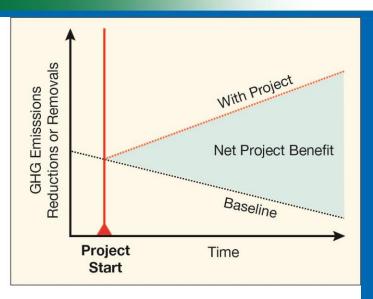
Voluntary Carbon Market

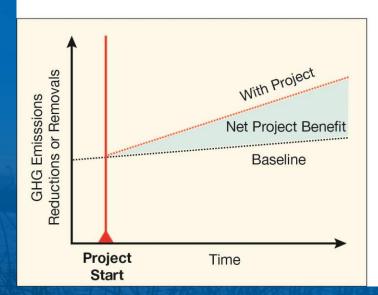


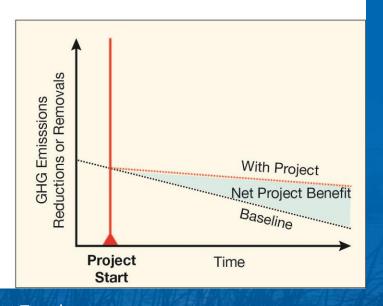
Real	Demonstrate that reductions have actually occurred
Additional	Ensure reductions result from activities that would not happen in the absence of a GHG market
Permanent	Mitigate risk of reversals Verify reductions ex-post
Verified	Provide for independent verification that emission reports are free of material misstatements
Owned unambiguously	Ownership of GHG reductions must be clear
Not harmful	Avoid negative externalities
Practicality	Minimize project implementation barriers

Activities with Potential GHG Benefits




- Restoration of tidal wetlands and seagrasses
- <u>Creation</u> of tidal wetlands (e.g. beneficial use)
- Conservation/avoided loss of existing tidal wetlands and seagrass beds




Goal of Carbon Management (Mitigation)

Source: Forest Trends

Tidal Wetland and Seagrass Restoration Methodology

Habitats – all tidal wetlands and seagrasses, globally

Eligible Activities

 Restoration via enhancing, creating and/or managing hydrological conditions, sediment supply, salinity characteristics, water quality and/or native plant communities.

Additionality

- Standardized approach: In U.S., all voluntary tidal wetland and seagrass restoration is additional!
- Non-U.S. projects case-by-case

VCS Methodology

VM0033

Methodology for Tidal Wetland and Seagrass Restoration

Version 1.

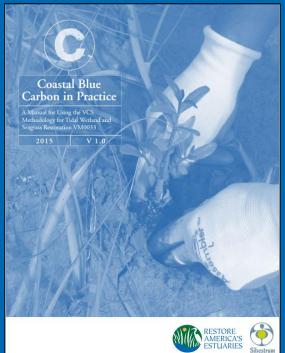
20 November 2015

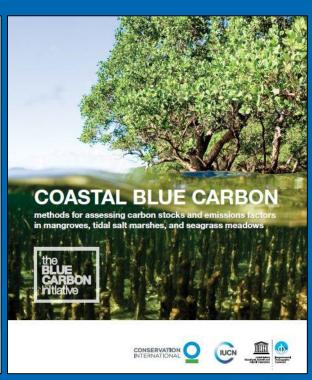
Sectoral Scope 14

Summary of First Project Steps

A feasibility assessment to determine a potential blue carbon project's suitability and anticipated GHG benefit.

Technical feasibility – assessment of the best restoration practices, anticipated GHG benefits, available methodologies, land suitability, project boundary, additionality, and permanence.


Financial feasibility – estimate of income and expenses, stakeholders, financial flows over project lifetime, , potential for grouping and best practices for structuring carbon finance.

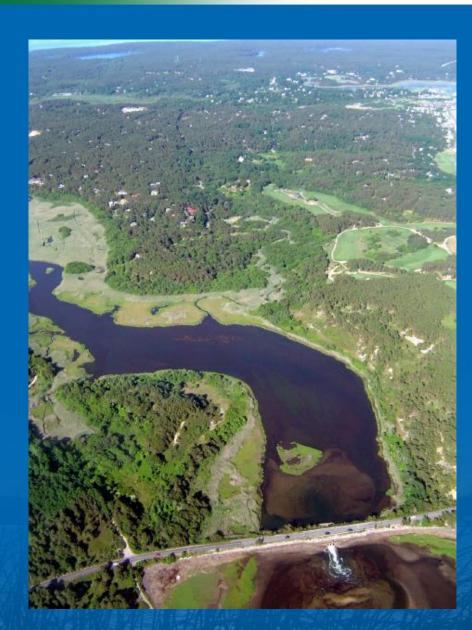

Legal and institutional feasibility –carbon and land rights, taxation issues, relevant regulatory requirements, and transactional structures.

Blue Carbon Toolbox

Restoration Methodology

Project Guidebook

Field Manual


These resources and more at www.estuaries.org/bluecarbon-resources

Methodology - Demonstration

Herring River Restoration,
Cape Cod National Seashore –
carbon project feasibility
study

- Begins early 2016
- NERRS SC Phase II, NOAA OHC, Friends of Herring River

Blue Carbon Science

Snohomish Estuary, Puget Sound, WA

- Current restoration plans:
 2.55 million tons CO₂
 1-year emissions 500,000 cars
- Full restoration 4700 ha:
 8.9 million tons CO₂
 1-year emission 1.7 million cars

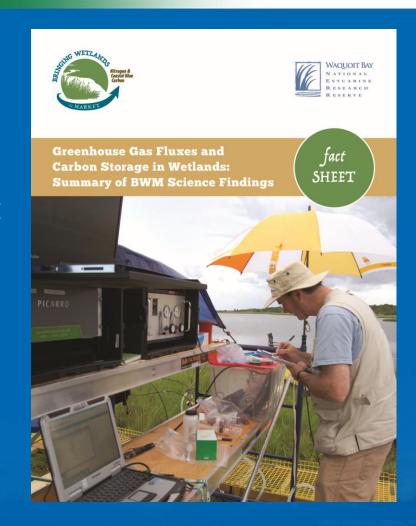
Coastal Blue Carbon
Assessment for the
Snohomish Estuary:
The Climate Benefits of
Estuary Restoration

https://www.estuaries.org/bluecarbon-science

Blue Carbon Science

Tampa Bay Assessment

- 74 mil metric tons (160,000 cars/year) by 2100
- Modeled habitat change due to SLR
- Mgmt recommendations:
 - Allow habitat to accrete
 - Conserve upland
 - Prioritize vulnerable areas
 - Maintain water quality



Blue Carbon Science

Bringing Wetlands to Market

- Quantify GHG emissions and C sequestration in salt marshes
- Understand processes to predict fluxes with change
- Develop user-friendly model for managers and policy makers
- Develop market tools
- Assess carbon project feasibility for Herring River restoration

Blue Carbon Policy

White House Commitments

- Develop Estimates of Baseline Carbon Stocks and Trends to Inform Federal Natural Resources Management: use the best-available information and methods to develop baseline estimates of carbon stocks and trends at local or regionallyappropriate levels for lands and coastal wetlands
- Assess, Restore, and Protect Coastal Habitats to Understand and Enhance the Storage of Blue Carbon:
 - National Accounting (NOAA and EPA)
 - Determine the value of protecting coastal habitats to safeguard carbon services (NOAA, FWS, EPA and USGS)

Priority Agenda
Enhancing the Climate Resilience

https://www.whitehouse.gov/sites/default/files/docs/enhancing_climate_resilience_of_americas_natural_resources.pdf

Education and Capacity Building

National Working Group (BCNWG)

 Support network for project development and implementation

Publications, Webinars, Outreach

- Website and resources
- Frequent briefings
- Educational webinar series
- Publications, such as Blue Carbon in Practice Manual

Upcoming webinar **July 7**Tampa Bay Findings
www.estuaries.org/bluecarbonevents

Education and Capacity Building

Capacity Building

- Series of workshops in the Gulf Coast supported by EPA,
 NOAA NERRS, NOAA OHC, USFWS Coastal Program
- Regional working groups
- Technical assistance for project development
- Advanced blue carbon workshop to conclude project (early 2017)

Overall Goal

Better understand and promote ALL ecosystem services:

- Marine habitat and biodiversity
- Water quality
- Storm and flood protection
- Recreation & Tourism
- Support jobs and economy
- Climate change mitigation

Better understanding of these ecosystems to improve management & restoration & increase investment

Thank you!

Stefanie Simpson
Blue Carbon Program
Coordinator
ssimpson@estuaries.org

www.estuaries.org/bluecarbon